
RDI: A Real-time Decision Support System Applied to
Dispatch Decision Problem

Raul S. Ferreira1, Mauricio P. Dal Pont1, Bruno M. A. da Silva1, Wendell W. Teixeira2

1Radix Software & Engineering
Rio de Janeiro, RJ, Brasil

2CPFL Energy
Campinas, SP, Brasil

raul.ferreira,mauricio.dalpont,bruno.silva{@radixeng.com.br}

wendell@cpfl.com.br

Abstract. Several important services with limited resources require
uninterrupted support for a vast amount of customers. For example, internet
providers, hospitals, distribution utilities and so on. When a customer’s call is
received in the proper channels, the reported problem pass through a screening
phase in which the operator judge whether or not a support should be sent
to the customer. However, not all problems are responsibility of the service
provider. For instance, when a distribution utility sends a maintenance team
to solve an energy issue that is out of company scope’s, this action generates
an improper dispatch problem. Improper dispatches bring high costs regarding
fuel and logistics, and can result in heavy penalties to the company. For
tackling this problem, we propose RDI, a decision support system that combines
supervised machine learning algorithm and model predictive control (MPC)
techniques. RDI receives customer’s calls information and recommends when
a maintenance team should be dispatched or not. Our first results indicate an
assertiveness of 83% in the number of true positives (proper dispatches) and a
decrease of 51% in the number of false positives (improper dispatches) within
a real dataset from the industry. Moreover, RDI is capable of calculating the
associated risk of each occurrence and by predicting changes in the current
number of unsolved customer’s calls using a Markov chain model. We show
how we built this system, how this solution was applied for diminishing dispatch
costs inside a distribution utility and possible directions for further research.

1. Introduction
A distribution utility has to deal with several customer’s calls regarding grid maintenance
or energy issues. For instance, the customer’s house energy suffers an interruption due to
a failure in the distribution system. The agents receive these calls on a daily basis through
proper channels. Generally, a customer’s call is received by the agent and then this occur-
rence pass through a screening phase. Hence, the agents responsible for collecting data
about the occurrence can analyze the customer information. Finally, the agents decide
whether a maintenance team must be sent to the customer address to solve the problem.

However, not all problems are responsibility of the company. Thus, there are
problems reported by the customers that are out of the company’s scope. For example,

the customer’s house energy turned off due to a fallen tree. Since the problem of fallen
trees in a street is solved by a municipality agency, this problem does not belong to the
company. This type of problem is denominated improper dispatch. The problem gener-
ates an unnecessary displacement for the maintenance team generate high costs regarding
logistics and fuel since the problem contributes to wrong schedule planning and more
travelled distance by the maintenance team. Moreover, a high number of improper dis-
patches can result in heavy penalties to the company since the maintenance team will not
be available to customers that really need support, creating a delay in the maintenance
services. The higher is the attendance delay, the higher is the penalty. Therefore, the
decision to dispatch a maintenance team follows two questions: 1)What is the chance of
the call be an improper dispatch ? 2)What is the cost if a maintenance team is not sent ?

To help the decision makers, we propose RDI, a real-time information system that
uses supervised machine learning along with a model predictive control (MPC) technique.
The supervised machine learning algorithm calculates the probability of the call be an im-
proper dispatch while the MPC calculates the risk associated with the possible cost if a
maintenance team is not sent. RDI uses the customer’s calls information and historical
data to recommend to the operation manager whether or not a maintenance team should
go dispatched. The first version of the system was capable of achieving 83% of assertive-
ness regarding true positives (proper dispatches) and halved the number of false positives
(improper dispatches). Thus, RDI is capable of drastically reducing operation costs.

Therefore, this work is organized as follows: in Section 2 we present related work
regarding solutions for call center maintenance operations. In Section 3, we show the ar-
chitecture of this system and its main modules. In Section 4 we present how we validated
the RDI system through a real scenario in the energy industry. In Section 5, we discuss
about the main points of the solution, and directions for further research.

2. Related Work

Regarding automatic classification for call centers, one of the first approaches was pro-
posed by [Busemann et al. 2000] in which the authors apply text processing techniques
along with machine learning algorithms within an assistance system for call center agents.
Using learning algorithms such as support vector machines (SVM) [Hearst et al. 1998]
the authors were able of achieving 78% of accuracy. Another study about classification
applied to call center domain was proposed by [Tang et al. 2003] where the authors
developed four methods for call-type classification using SVM on a database of human-
to-human conversations recorded from an information technology help desk call center.

Several applications using machine learning algorithms were proposed for dis-
patch management. For instance, a support decision system for dispatching of trucks
loaded with ready mixed concrete [Maghrebi et al. 2013]. The authors applied decision
trees and rule induction and compared with an operation manager obtaining superior re-
sults. Another related work analyzes sound data collected by microphones attached to
the businesses in edges [Yamato et al. 2017]. Thus, when an anomaly data is found,
it automatically sends a maintenance team to the location. Another example of support
decision system proposes to tackle predictive maintenance problems in the electric power
distribution systems [Barriquello et al. 2017]. The authors intended to build a system
capable of performing analysis, simulation, planning, and operation of maintenance and

customer services in electric power distribution systems.

Another relevant related work is the decision support system built for helping to
make decisions regarding problem of dispatching ambulances for emergency medical ser-
vices [Roy 2017]. The authors propose a system that applies agent-based modeling and
simulation concepts in evaluating different approaches to solve ambulance-dispatching
decision problems under bounded rationality. Thus, it investigates the effect of over-
responding, that is, dispatching ambulances even for doubtful high-risk patients, on the
performance of equity constrained emergency medical services. The authors developed
two different dispatching policies: first, a policy based on maximum reward, and second,
a policy based on the Markov decision process formulation. The second policy was bet-
ter since it solved the problem using value iteration method, performed better than the
maximum reward method in terms of number of served patients.

3. The RDI Decision Support System
The RDI system was built to support operations centre in dispatch decision problems.
Since the system uses historical data for training the supervised learning algorithm and
receives real-time data regarding the incoming calls, the lambda architecture [Hausenblas
and Bijnens 2018] was chosen for building RDI. Lambda architecture takes into account
that a system has three layers: the hot path (real-time processing), cold path (batch pro-
cessing), and the service layer, as illustrated in Figure 1(a).

Hence, the following flow can be applied in a lambda architecture: data is acquired
(1) and distributed to the real-time processing layers (4) and for the batching processing;
the real-time layer is a fast processing layer that ingest small amount of real-time data.
On the other hand, the batch layer has a higher latency since it process much more data,
generally, historical data. Later, this information is consumed in the service layer (3)
through specific queries (5). Figure 1(b) illustrates the entire process.

(a) Lambda concept. (b) Lambda architecture.

Figure 1. Lambda model.

Since RDI was built to support operators that need to make decisions about main-
tenance dispatches 24 hours per day the system was built on top of the lambda architecture
and the application flow is illustrated in Figure 2. In the first layer, RDI is hosted in the
same workstation of the systems used by operators. The second layer contains an API
responsible for communicating with the first layer and the third one. The API receives

actions from the RDI system and process the machine learning and MPC algorithms with
data retrieved from the several databases from the operations centre. After that, the API
returns the response to the RDI system.

Figure 2. System communication.

The RDI system is composed by two modules: a machine learning module and
a MPC module. The machine learning module is responsible for giving the probability
of a proper/improper dispatch. The MPC module is responsible for calculating the risk
of dispatch/not dispatch a support team. This risk is related to the cost associated if
an operator does not send a support team to the problem. Furthermore, the risk is also
associated with the importance of the call. For example, for a distribution utility, a hospital
without energy is more important than a house with the same problem.

The machine learning module is composed by a supervised learning algorithm
denominated extreme gradient boosting [Chen and Guestrin 2016]. The algorithm was
chosen for its scalability since it runs up to ten times faster than another popular solutions
on a single machine and scales to billions of examples in distributed or memory-limited
settings. Besides, since this learning model is easily explainable, this algorithm seems
to be suitable for applying in generic fields with convincing results. The probability of
proper/improper dispatch calculated by the machine learning module is also used as part
of the cost function in the MPC module.

The MPC module is responsible for evaluate the costs to send or not a support
team to support customers. The MPC is an algorithm that tries to obtain a control law
that minimizes an objective function [Camacho and Bordons 2007]. Building a MPC
control strategy demands three main items: a predictive model, an objective function and
a procedure to obtain the control law [Normey-Rico and Camacho 2007]. For this work,
the predictive model was designed using a Markov chain process, which is a discrete
model where the next state only depends on the current state. The Markov property states
that the process is memoryless, that is, the system is a stochastic process [Bogachev 2006]
defined as:

P (Xt = j|X0 = i0, X1 = i1, ..., Xt−1 = it−1) = P (Xt = it|Xt−1 = it−1)

The objective function needs to represent the risks of dispatching or not an support team.
Also, it needs to represent the total risk of the current state looking forward on the pre-
diction horizon. Hence, it is possible to prioritize the events. The objective function

J =
∑M

i=1 Ji +
∑N

1

∑P (N)
p=1 Jp (1) is a sum of every event objective function on current

state Ji = λiui + λiR(IDi, Hi) (2) and in the future states Jp = λpup + λpR(Hp) (3). In
Equations 2 and 3, u is the cost of dispatching a maintenance team to solve the problem
and R is the cost function of not dispatching a support team to that event with arguments
ID. Therefore, ID is the machine learning output probability of the event being an im-
proper dispatch and H the total time that the event is unsolved. Besides, λ is the binary
control operator that decides to dispatch (1) or not dispatch (0) a support team. In Equa-
tion 1, the second part refers to the costs on the predicting horizon N , where the only
input is the total time that the event remains unsolved. The variable P stands for the num-
ber of events predicted on that state N . Minimizing Equation 1 gives us the control array
λ that decides when to dispatch or not an event considering constraint of finite resources
(number of support teams).

4. Experimental Settings
We validated the RDI application in a real scenario: the operations centre of the distribu-
tion utility CPFL Energy. The dataset chosen for this work was extracted from the call
center databases from CPFL Energy. The extracted dataset contains 248,570 registers
with one year of customer’s calls. Each register has five features: neighbourhood, city,
property type, number of recent calls and event priority. The dataset are labeled with
two classes: improper dispatches and proper ones. The classes are imbalanced: 80% of
proper dispatches and 20% of improper dispatches. In the next subsections we explain
the experiments and the results for the machine learning and MPC modules.

4.1. Experiments

For machine learning experiments, data was divided in 80% for training and 20% for
testing. Beyond the overall accuracy, the chosen metrics to assess the results were macro-
F1, for measuring the quality of intraclass classification, and the Matthews correlation
coefficient (MCC) [Matthews 1975] to measure how the system classifies the minority
class, since this dataset is imbalanced. For the Markov chain model, data was divided
in 20% for training and 80% for tests, and the predicting horizon of the MPC’s objective
function was set to a short sightedN = 1 for this first experiment. That means the Markov
chain will predict the changes on the current number of events just on the next state.

4.2. Results

Table 1 shows the confusion matrix of the results of the machine learning model. The
quantity of improper dispatches (false positives) was halved while the dispatches that
really need support (true positives) suffered a small decrease, about 17%.

Table 1. Confusion matrix dispatches
Dispatches True positive False positive True negative False negative
248,570 57,440 (83%) 11,586 (17%) 2,828 (51%) 2,717 (49%)

Even the overall accuracy was 80.82%, the MCC result was 0.23. These results
corroborate that the system correctly classifies a high number of true positives but still
has difficulty to correctly classify true negatives. However, the macro F1-score was 0.59,

what indicates a reasonable quality in the predictions since the model achieves good pre-
cision values sooner, in the first events and decreases while the events come through the
time. This behaviour indicates that data has concept-drift characteristics and possible
approaches to deal with this are mentioned in Section 5.

Regarding the Markov chain model results, the process resulted in a high correla-
tion R = 0.9982 with a percentage mean error of 5.9085%. However, a good correlation
not always means a good agreement between datasets. Thus, the Bland-Altman plot [Alt-
man D G 1983] was performed and its results are shown in Figure 3(a). This plot shows
the agreement between real data and the predicted data. Using 1.96 as standard deviation,
we can affirm that 95% of the predicted values will be within −21.2596 and 22.0874 of
the real values. Hence, it is assumed that there is a consistent error of 0.4139 regard-
ing predicted events. These analysis confirm that the Markov chain model is a reliable
predictor on the N = 1 predicting horizon, as shown in Figure 3(b).

(a) Bland-Altman: limits between −21.2596 and
22.0874. Mean error = 0.4139.

(b) Comparison between the real dataset (blue) and
the predicted dataset (red).

Figure 3. Markov chain model results.

Table 2 presents the preliminary results of the dispatch decision by the MPC. It
shows the decision made at a certain state, where 59 events were currently unsolved with
a limited number of 25 maintenance teams (constraint). The “unknown” on the last 5
events refers to the predicted events from the Markov Chain with Np = 1, which are
not currently opened and the machine learning has not classified yet. It also predicts that
all 5 events will not be improper dispatches. Using a Mixed-integer linear programming
(MILP) [Bemporad and Morari 1999] algorithm, Equation 1 was minimized in order to
obtain the binary control array λ.

Each individual cost from each event on Table 2 represents the total costs of not
dispatching a maintenance team. The minimization algorithm chooses the best setup re-
solving the highest risk events. MPC also decides to save 5 maintenance teams to solve
the next 5 predicted events, which were higher risk events in that prediction horizon. Fi-
nally, Figure 4(a) shows the visual details regarding the application. The design of the
application was made to not interfere with the existing systems the operations centre.
Figure 4(b) shows the RDI application on the screens of the operations centre.

5. Conclusions

In this work we introduced a decision support system, denominated RDI, built for reduc-
ing the quantity of improper dispatches. We showed that combining techniques form two

Table 2. Decision for dispatching (1) or not dispatching (0) a maintenance team.
Event 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
% I.D. 45.05 76.55 56.88 60.28 50.46 52.27 41.87 16.37 58.36 47.85 66.88 45.97 35.18 73.77 74.57 16.92
Cost 1.58 1.13 0.60 1.26 0.95 0.77 1.14 1.06 0.61 0.82 0.49 1.27 1.00 0.75 0.49 1.78
Label 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1
Event 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
% I.D. 40.03 38.54 47.80 71.15 45.04 68.38 73.18 66.32 70.24 54.04 35.71 63.62 43.31 26.39 60.83 38.82
Cost 1.52 1.07 1.36 0.96 0.96 1.30 0.46 0.57 0.96 1.39 1.01 0.69 1.19 0.88 0.65 1.65
Label 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1
Event 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
% I.D. 53.55 70.72 28.08 55.47 83.00 71.28 59.58 41.53 72.07 45.65 39.42 21.36 68.92 69.86 38.33 26.38
Cost 0.64 0.62 1.63 1.27 0.28 0.45 0.65 1.61 0.72 0.87 1.44 1.01 0.76 0.63 0.87 1.60
Label 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1
Event 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
% I.D. 71.49 38.51 71.85 12.88 76.53 61.80 71.14 11.83 46.23 59.77 25.47 unknown unknown unknown unknown unknown
Cost 1.22 1.09 0.56 1.07 0.77 0.55 0.46 1.15 0.69 0.67 1.29 1.25 1.25 1.25 1.25 1.25
Label 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1

(a) RDI screen. (b) RDI on the existing systems screens.

Figure 4. RDI in production.

different fields such as machine learning and model predictive control bring interesting
and reliable results for resource planning problems. We validated the RDI through a real
scenario and the system helped not only to highly reduce the dispatch costs but improved
the logistics of the operations centre.

Regarding machine learning module, RDI was able to reduce the number of im-
proper dispatches up to 51% while keeping an overall accuracy of 83% for the proper
dispatches. However, is expected that 100% of proper dispatches needs to be identified,
thus improvements on the model are needed. Regarding MPC module, it predicted that 5
high risk events would be opened on the next state and decided to save maintenance teams
to solve them later. However, expanding the prediction horizon to Np > 1 should present
better dispatch strategies and needs more experimental tests. Finally, we highlight some
directions for further research: 1)Density approaches aiming to reduce the bias of the
learning model induced by the similar customer’s calls contained in the stream [Ferreira
et al. 2018a]; 2)Since some characteristics of this real-time dataset are non-stationary,
learning models for concept-drift can improve the results [Ferreira et al. 2018b]; and
3)Development of better MPC objective function with other assumptions such as the total
time that a customer does not have energy by month and the customer’s location.

References
Altman D G, B. J. M. (1983). Measurement in medicine: the analysis of method compar-

ison studies. The Statisticians, pages 307–317.

Barriquello, C. H., Garcia, V. J., Schmitz, M., Bernardon, D. P., and Fonini, J. S. (2017).
A decision support system for planning and operation of maintenance and customer
services in electric power distribution systems. In System Reliability. InTech.

Bemporad, A. and Morari, M. (1999). Control of systems integrating logic, dynamics,
and constraints. Automatica, 35(3):407–427.

Bogachev, L. V. (2006). Random walks in random environments. Elsevier Encyclopedia
of Mathematical Physics.

Busemann, S., Schmeier, S., and Arens, R. G. (2000). Message classification in the call
center. In Proceedings of the sixth conference on Applied natural language processing,
pages 158–165. Association for Computational Linguistics.

Camacho, E. F. and Bordons, C. (2007). Model Predictive Control. Springer.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Pro-
ceedings of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, pages 785–794. ACM.

Ferreira, R. S., Accioli, B., William, W., Zimbrão, G., and Alvim, L. (2018a). Density-
based core support extraction for non-stationary environments with extreme verifica-
tion latency. In 7th Brazilian Conference on Intelligent Systems (BRACIS).

Ferreira, R. S., Zimbrão, G., and Alvim, L. G. M. (2018b). AMANDA: Density-based
Adaptive Model for Non-stationary Data under Extreme Verification Latency Scenar-
ios. PhD thesis, Universidade Federal do Rio de Janeiro (UFRJ).

Hausenblas, M. and Bijnens, N. (2018). Lambda architecture - available from internet:
http://lambda-architecture.net/ .

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., and Scholkopf, B. (1998). Support
vector machines. IEEE Intelligent Systems and their applications, 13(4):18–28.

Maghrebi, M., Sammut, C., and Waller, T. (2013). Reconstruction of an expert’s deci-
sion making expertise in concrete dispatching by machine learning. Journal of Civil
Engineering and Architecture, 7(12):1540.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary struc-
ture of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure,
405(2):442–451.

Normey-Rico, J. E. and Camacho, E. F. (2007). Control of Dead-time Processes. Springer.

Roy, R. B. (2017). Equity-constrained dispatching models for emergency medical ser-
vices. Team Performance Management: An International Journal, 23(1/2):28–45.

Tang, M., Pellom, B., and Hacioglu, K. (2003). Call-type classification and unsupervised
training for the call center domain. In Automatic Speech Recognition and Understand-
ing Workshop.

Yamato, Y., Fukumoto, Y., and Kumazaki, H. (2017). Predictive maintenance platform
with sound stream analysis in edges. Journal of Information processing, 25:317–320.

