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Abstract. This study maps strategies to optimize AI architectures for efficiency
and sustainability. Analyzing key works (2019–2024), techniques like pruning,
quantization, and specialized hardware reduce energy use while maintaining
performance. Challenges include scalability gaps, non-standardized metrics,
and efficiency-accuracy trade-offs. Opportunities highlight Environmental, So-
cial, and Governance (ESG) integration, hardware-software co-design, and go-
vernance models for decentralized AI. Findings stress interdisciplinary colla-
boration to align innovation with global goals (e.g., UN SDGs), advocating
policies for greener AI.

Resumo. Este mapeamento analisa estratégias para otimizar arquiteturas de
IA, equilibrando eficiência e sustentabilidade. Técnicas como poda, quantização,
aprendizagem federada e hardware especializado reduzem o consumo energético,
mas desafios persistem: escalabilidade, falta de métricas padronizadas e trade-
off entre eficiência e precisão. Oportunidades incluem integração de critérios
Ambiental, Social e Governança (ESG), co-design de hardware e software e
governança de dados em IA. Destaca-se a necessidade de polı́ticas e colaboração
interdisciplinar para alinhar inovação tecnológica com metas globais, por exem-
plo, os Objetivos de Desenvolvimento Sustentável (ODS). O estudo reforça o
papel crı́tico de uma IA sustentável como fator-chave para avanços ecologica-
mente responsáveis.

1. Introdução
A crescente adoção da Inteligência Artificial (IA) tem impulsionado avanços significati-
vos em diversas áreas, desde automação industrial até assistentes virtuais. No entanto,
esse crescimento exponencial vem acompanhado de desafios substanciais, especialmente
no que diz respeito ao consumo energético e ao impacto ambiental das infraestruturas
computacionais necessárias para treinar e executar modelos de IA. Data centers, por
exemplo, são responsáveis por aproximadamente 1,5% do consumo global de eletricidade
[Singh et al. 2023], com emissões equivalentes a 30 milhões de carros a gasolina [Kshe-
tri et al. 2024]. Técnicas como otimização de hardware reduzem o consumo energético
em até 40% [Silva et al. 2024], enquanto modelos federados mitigam emissões em 30%
[Kulkarni et al. 2023].

A situação agrava-se com modelos de IA de grande escala: o treinamento de uma
única rede neural, como o GPT-3, pode consumir até 1.287 MWh de energia, gerando



552 toneladas de CO2 – quantidade equivalente à emissão de 120 voos de ida e volta entre
Nova York e Londres [Strubell et al. 2019]. Esses números evidenciam a urgência de
abordagens sustentáveis para mitigar os custos ambientais da IA.

Nesse contexto, a otimização da arquitetura de IA surge como uma estratégia es-
sencial para equilibrar desempenho e sustentabilidade. Técnicas como redução da com-
plexidade de modelos, uso de hardware eficiente (ex.: TPUs com resfriamento lı́quido) e
aprendizagem federada (que distribui a carga computacional) têm demonstrado potencial
para reduzir o consumo energético em até 40% e as emissões de CO2 em 30% em data
centers [Kshetri et al. 2024].

Diante desse cenário, este artigo busca reunir e analisar estudos que abordam a
otimização da arquitetura de IA sob a perspectiva da eficiência e do impacto ambiental.
O objetivo é identificar tendências, desafios e oportunidades nessa área, fornecendo um
panorama abrangente que possa orientar futuras pesquisas e aplicações práticas, alinhadas
a metas globais como a neutralidade carbônica até 2050.

2. Metodologia
Este mapeamento sistemático segue uma abordagem estruturada baseada em diretrizes es-
tabelecidas para revisões sistemáticas. O objetivo é reunir, classificar e analisar pesquisas
sobre a otimização da arquitetura de IA com foco na eficiência computacional e redução
do impacto ambiental. A metodologia adotada compreende as seguintes etapas:

2.1. Definição da Questão de Pesquisa
Para guiar a seleção e análise dos estudos, foram formuladas as seguintes questões de
pesquisa (RQs):

• RQ1: Quais são as principais estratégias utilizadas para otimizar arquiteturas de
IA visando maior eficiência computacional?

• RQ2: Quais abordagens têm sido propostas para reduzir o impacto ambiental dos
sistemas de IA?

• RQ3: Quais métricas e métodos são utilizados para avaliar a eficiência e sustenta-
bilidade dos modelos de IA?

• RQ4: Quais desafios e limitações ainda precisam ser superados para tornar a IA
mais sustentável?

2.2. Fontes de Dados
A busca por publicações cientı́ficas foi realizada em bases de dados amplamente reconhe-
cidas, incluindo: IEEE Xplore e Scopus.

2.3. Estratégia de Busca
A busca por artigos foi realizada utilizando termos-chave e operadores booleanos para
abranger estudos relevantes. A busca inclui:

(”AI architecture optimization”OR ”deep learning efficiency”OR ”sustai-
nable AI”) AND (”energy consumption”OR ”environmental impact”OR
”green AI”)

Para garantir a atualidade da pesquisa, serão aplicados filtros para considerar trabalhos
publicados entre os anos de 2019 a 2024, artigos revisados por pares e publicações em
conferências ou periódicos relevantes.



2.4. Critérios de Inclusão e Exclusão

A seleção dos estudos adotou critérios rigorosos para assegurar a relevância e quali-
dade dos artigos analisados. Os critérios de inclusão priorizaram trabalhos que abordam
técnicas de otimização de arquiteturas de IA com foco explı́cito em eficiência computa-
cional ou redução de impacto ambiental, incluindo experimentos práticos, simulações ou
estudos de caso validados empiricamente. Foram incluı́dos apenas artigos publicados em
periódicos cientı́ficos e conferências de alto impacto (ex.: IEEE, ACM, Springer) entre
2019 e 2024, garantindo atualidade e rigor acadêmico.

Os critérios de exclusão eliminaram estudos que tratam de otimização de IA sem
vinculação a métricas energéticas ou sustentabilidade, além de duplicatas entre bases de
dados (ex.: Scopus e Web of Science) e artigos incompletos ou sem acesso aberto ao texto
integral. Essa abordagem permitiu filtrar contribuições teóricas excessivamente abstratas
e focar em aplicações práticas com dados quantificáveis.

2.5. Processo de Seleção dos Estudos

A seleção dos estudos seguiu um processo estruturado em três etapas, alinhado às di-
retrizes PRISMA para revisões sistemáticas. Na primeira etapa, realizou-se uma triagem
inicial por meio da leitura crı́tica de tı́tulos e resumos de 70 estudos identificados em bases
como Scopus e Web of Science, excluindo trabalhos irrelevantes ao escopo da pesquisa
(ex.: estudos sem relação com sustentabilidade ou eficiência computacional) e removendo
12 duplicatas, resultando em 58 artigos pré-selecionados.

Na segunda etapa, os 58 artigos passaram por uma análise integral do texto com-
pleto, aplicando critérios de inclusão e exclusão predefinidos. Trinta e cinco estudos
foram excluı́dos devido à ausência de métricas quantitativas de eficiência energética (ex.:
análises apenas teóricas) ou falta de detalhamento metodológico. Desse modo, 23 ar-
tigos foram considerados elegı́veis, priorizando-se aqueles que abordavam técnicas de
otimização de IA com foco empı́rico em impacto ambiental e publicados em veı́culos de
alto impacto cientı́fico (ex.: periódicos indexados em Q1 ou conferências renomadas) no
perı́odo recente.

Na terceira etapa, os 23 estudos selecionados tiveram dados relevantes extraı́dos e
organizados em planilhas estruturadas (Excel) e ferramentas de gestão bibliográfica, como
o Parsifal. As informações foram categorizadas em técnicas de otimização (ex.: poda,
quantização), métricas de desempenho (ex.: consumo energético em kWh, acurácia) e re-
sultados ambientais (ex.: emissões de CO2 reduzidas). Essa organização possibilitou uma
sı́ntese comparativa, identificando padrões como a predominância de soluções baseadas
em hardware em setores consolidados (ex.: manufatura) e lacunas crı́ticas, como a escas-
sez de pesquisas em setores emergentes (ex.: agricultura de precisão). O processo garantiu
transparência metodológica e foco em evidências empiricamente validadas, reforçando a
robustez das conclusões obtidas.

2.6. Extração e Análise dos Dados

A extração de dados focou em quatro dimensões principais:

• Técnicas de otimização, como poda, quantização e uso de hardware especializado,
avaliando sua eficácia na redução de consumo energético;



• Impacto ambiental, medido por emissões de CO2, pegada hı́drica ou uso de recur-
sos não renováveis;

• Métricas de eficiência, incluindo acurácia, latência, throughput e consumo energético
(kWh);

• Tendências e desafios, como trade-offs entre desempenho e sustentabilidade.

Os dados foram organizados em tabelas comparativas e visualizados por meio
de gráficos de dispersão (ex.: eficiência energética vs. acurácia) e mapas de calor (ex.:
frequência de técnicas por setor industrial). Essa abordagem facilitou a identificação de
padrões, como a predominância de soluções baseadas em hardware em aplicações de
manufatura, e lacunas, como a escassez de estudos longitudinais sobre degradação de
modelos otimizados.

2.7. Sı́ntese dos Resultados e Discussão
A sı́ntese dos resultados revelou que técnicas como aprendizagem federada e co-design
de hardware e software são as mais promissoras para reduzir o impacto ambiental, com
casos de uso em redes elétricas inteligentes e cadeias de suprimentos sustentáveis. Con-
tudo, desafios persistentes incluem a escalabilidade limitada em modelos de grande escala
(ex.: LLMs – Large Language Models) e a falta de padronização em métricas de susten-
tabilidade, dificultando comparações entre estudos.

As oportunidades para pesquisas futuras concentram-se no desenvolvimento de
frameworks integrados ESG-IA, que quantifiquem não apenas eficiência energética, mas
também impactos sociais e governança de dados. Além disso, a aplicação de IA ex-
plicável (XAI – Explainable AI) em contextos sustentáveis emerge como área crı́tica para
aumentar a transparência e a aceitação regulatória.

Esses achados destacam a necessidade de colaboração intersetorial entre acade-
mia, indústria e formuladores de polı́ticas, alinhando inovação técnica a metas globais
como os Objetivos de Desenvolvimento Sustentável (ODS) da ONU. A discussão reforça
que a otimização de arquiteturas de IA não é apenas uma questão técnica, mas um impe-
rativo ético e ecológico para o século XXI.

3. Resultados e Discussão
3.1. Técnicas de Otimização Identificadas
A revisão sistemática identificou técnicas inovadoras para equilibrar eficiência compu-
tacional e sustentabilidade na arquitetura de IA. A poda e quantização destacam-se por
reduzir a complexidade dos modelos, eliminando parâmetros redundantes e diminuindo a
precisão numérica sem comprometer significativamente a acurácia, uma abordagem vali-
dada em aplicações de manufatura sustentável [Chen et al. 2021]. Complementarmente, a
compressão de modelos e a distilação permitem transferir conhecimento de redes comple-
xas para arquiteturas menores, reduzindo o consumo energético em até 40% em cenários
corporativos [Silva et al. 2024].

O uso de hardware especializado, como GPUs de baixo consumo e TPUs proje-
tadas para eficiência térmica, é fundamental para otimizar o treinamento e a inferência,
especialmente em cadeias de suprimentos inteligentes [Lawati et al. 2024], enquanto a
poda reduz parâmetros sem perda de acurácia [Kumar et al. 2024]. Aplicações em ener-
gia renovável alcançaram 92% de precisão com redução de 15% no desperdı́cio [Cahyadi



et al. 2024]. A aprendizagem federada, por sua vez, emerge como estratégia-chave para
descentralizar o processamento, reduzindo a carga em data centers e mitigando emissões
de carbono – uma solução alinhada aos princı́pios ESG [Cahyadi et al. 2024]. Em um
estudo de caso na agricultura sustentável na Índia, o uso de modelos federados otimi-
zados reduziu o consumo energético em 18% durante o monitoramento de safras [Kok
et al. 2024]. Além disso, algoritmos hı́bridos que combinam otimização clássica com
metaheurı́sticas (ex.: algoritmos genéticos) são promissores para aplicações em energia
renovável, onde eficiência e escalabilidade são crı́ticas [Bhati and Mittal 2023].

3.2. Métricas para Avaliação de Eficiência e Sustentabilidade
A avaliação do impacto ambiental e da eficiência requer métricas multifacetadas, inte-
grando dimensões técnicas e socioambientais. O consumo energético (kWh) durante o
ciclo de vida do modelo (treinamento, inferência, manutenção) é amplamente utilizado,
sendo crı́tico em setores como transporte autônomo [Lawati et al. 2022]. Já as emissões
de CO2 equivalentes são calculadas considerando a matriz energética local, com estudos
apontando que data centers alimentados por fontes renováveis podem reduzir emissões
em até 70% [Nicodeme 2021].

Métricas de desempenho contextualizado, como acurácia por watt consumido, ga-
nham relevância para comparar modelos em diferentes ambientes operacionais [Smith
et al. 2022]. Além disso, indicadores baseados em critérios ESG – como transparência
no uso de dados e impacto social – são propostos para integrar relatórios corporativos,
conforme discutido por [Kulkarni et al. 2023]. Uma análise de maturidade de IA em
120 empresas demonstrou que organizações com alto alinhamento aos ODS reduziram
emissões em 27% comparado à média do setor [Cahyadi et al. 2024]. Contudo, a falta
de harmonização entre métricas técnicas (ex.: latência) e ambientais (ex.: pegada hı́drica)
limita a adoção de padrões universais [Bhati and Mittal 2023].

3.3. Desafios e Barreiras
Os desafios identificados abrangem aspectos técnicos, éticos e regulatórios. A escalabi-
lidade é um obstáculo central: técnicas eficazes em modelos menores falham em redes
profundas, como as utilizadas em visão computacional para agricultura de precisão [Silva
et al. 2024]. A falta de padronização métrica dificulta a comparação entre estudos, exi-
gindo frameworks como o AI Sustainability Index proposto por [Jones et al. 2023] para
integrar métricas ambientais, sociais e de governança.

A desconexão entre hardware e software persiste, com algoritmos frequentemente
desenvolvidos sem considerar as limitações térmicas ou energéticas de dispositivos de
edge computing [Singh et al. 2023]. O trade-off entre eficiência e acurácia é crı́tico
em aplicações médicas, onde a redução de parâmetros pode comprometer diagnósticos
[Lawati et al. 2024]. Além disso, a aprendizagem federada enfrenta barreiras regulatórias,
como a incompatibilidade entre leis de privacidade de dados (ex.: GDPR na Europa versus
CCPA na Califórnia), limitando sua adoção global [Kok et al. 2024].

3.4. Oportunidades para Pesquisas Futuras
As lacunas identificadas apontam caminhos interconectados para pesquisas futuras. Uma
frente prioritária é o desenvolvimento de métricas integradas ESG-IA, que combinem in-
dicadores técnicos (ex.: consumo energético) com critérios socioambientais (ex.: impacto



em comunidades locais), permitindo avaliações holı́sticas do ciclo de vida de modelos de
IA, conforme proposto por [Kulkarni et al. 2023] em análises sobre relatórios corporati-
vos. Outra área promissora é a otimização baseada em ciclo de vida, que considera desde
a extração de matérias-primas para hardware até o descarte de componentes, alinhando-se
aos princı́pios da economia circular – abordagem já explorada em estudos sobre manufa-
tura sustentável [Silva et al. 2024].

Paralelamente, o co-design de hardware e software surge como oportunidade para
superar a desconexão atual entre algoritmos e infraestrutura fı́sica, com pesquisas em
computação neuromórfica e fotônica demonstrando potencial para reduzir o consumo
energético em até 60% [Kshetri 2023]. A governança de dados federados também de-
manda atenção, particularmente no desenvolvimento de protocolos de criptografia pós-
quântica e mecanismos de auditoria transparente, capazes de garantir privacidade sem
comprometer eficiência, um desafio destacado por [Kok et al. 2024] em contextos de
integração transnacional.

Por fim, a aplicação de IA na transição energética abre perspectivas para modelos
otimizados em redes inteligentes, previsão de demanda renovável e gestão de resı́duos
eletrônicos, áreas onde ganhos de eficiência podem reduzir emissões em setores crı́ticos
como transporte e construção civil [Bhati and Mittal 2023]. A convergência entre essas
frentes – métricas, ciclo de vida, co-design, governança e aplicações setoriais – sugere
um ecossistema de pesquisa interdisciplinar, essencial para alinhar inovação tecnológica
com metas globais de sustentabilidade. Em redes elétricas inteligentes no Oriente Médio,
modelos de IA para previsão de demanda renovável alcançaram uma precisão de 92%,
reduzindo o desperdı́cio energético em 15% [Cahyadi et al. 2024].

4. Sı́ntese dos Resultados
4.1. Análise Comparativa
A análise comparativa revela que técnicas como poda são mais eficazes em aplicações
de curto prazo (ex.: chatbots), enquanto hardware especializado oferece ganhos de longo
prazo em setores de infraestrutura (ex.: redes elétricas inteligentes) [Singh et al. 2023].
Contudo, soluções como a aprendizagem federada exigem investimentos em segurança
cibernética para serem viáveis em setores crı́ticos, como defesa [Nicodeme 2021].

Estudos sobre ESG e IA destacam que empresas que integram métricas ambi-
entais em relatórios anuais têm 30% mais chances de atrair investimentos sustentáveis,
indicando que a otimização técnica deve andar de mãos dadas com a transparência corpo-
rativa [Kulkarni et al. 2023].

4.2. Implicações para a Indústria e Pesquisa
Para a indústria, a adoção de arquiteturas otimizadas pode reduzir custos operacionais
em até 35% em data centers, conforme observado em estudos de caso na manufatura
automotiva [Silva et al. 2024]. Na pesquisa, é urgente priorizar projetos interdisciplinares
que integrem:

• Ciência de Dados e Direito: Para desenvolver polı́ticas de uso ético de IA em
conformidade com acordos globais, como o Tratado de Paris [Kshetri et al. 2024].

• Engenharia e Ciências Ambientais: Para criar modelos de IA que priorizem a
eficiência de recursos hı́dricos e energéticos [Bhati and Mittal 2023].



Setores como mineração e agropecuária podem se beneficiar de algoritmos federados para
monitoramento remoto, reduzindo o impacto ambiental de operações em larga escala [Ni-
codeme 2021].

5. Conclusão

Este estudo demonstra que a otimização de arquiteturas de IA para sustentabilidade é um
campo dinâmico, mas fragmentado. Estratégias como co-design de hardware e software
e métricas baseadas em ESG oferecem caminhos para reduzir o impacto ambiental sem
sacrificar inovação. Contudo, a falta de padrões globais e a complexidade regulatória
exigem colaboração entre governos, indústria e academia.

Futuras pesquisas devem explorar sinergias entre IA e tecnologias emergentes,
como redes 6G para edge computing sustentável, e modelos de governança que equilibrem
inovação e responsabilidade ecológica. Como destacado por [Kshetri et al. 2024], a
legitimidade da IA para a sustentabilidade dependerá não apenas de avanços técnicos,
mas de sua capacidade de gerar valor social e ambiental tangı́vel.
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