Desenvolvimento Sustentavel de Software e Eficiéncia
Energética do Codigo
Um Mapeamento Sistematico

André de Moura e Souza, Patricia Cristiane de Souza, Eunice P. dos Santos Nunes

nstituto de Computacdo — Universidade Federal de Mato Grosso (UFMT)
CEP 78.060.900 — Cuiabd, MT — Brazil

andre.souza8@sou.ufmt.br, patricia@ic.ufmt.br, eunice.ufmt@gmail.com

Abstract. Due to the expansion of technological processes, driven by innovati-
ons in software models, the importance of sustainability has gained prominence
in recent years. This article aims to gather and identify methods and practices
that help in the development of software systems aimed at building programs ef-
ficiently, aiming at the conservation of computational and environmental resour-
ces. In addition, this systematic mapping also addresses the main mechanisms
that contribute to the analysis of the application of these techniques.

Resumo. Em razdo da expansdo dos processos tecnologicos, impulsionada pe-
las inovagoes nos modelos de software, a importancia da sustentabilidade ga-
nhou destaque nos iltimos anos. Este artigo tem como objetivo reunir e identi-
ficar métodos e prdticas que auxiliam no desenvolvimento de sistemas de soft-
ware voltados para a constru¢cdo de programas de forma eficiente, visando a
conservagdo de recursos computacionais e ambientais. Além disso, este mape-
amento sistemdtico também aborda os principais mecanismos que contribuem
para a andlise da aplicacdo dessas técnicas.

1. Introducao

O termo “sustentabilidade” originou-se em um contexto em que 0 uso excessivo dos re-
cursos naturais superava sua capacidade de reposi¢do. Segundo [GROBER 2007], a ideia
de sustentabilidade ndo se restringe apenas a0 meio ambiente, mas surge da necessidade
de reflexdo consolidada na sociedade, sendo peca-chave para mudancgas culturais e para
o desenvolvimento do pensamento coletivo. Em outras palavras, a sustentabilidade, con-
forme [FERREIRA 2010], refere-se a condi¢do ou qualidade de algo que pode ser man-
tido, defendido e sustentado. Trata-se, portanto, de um conceito que vai além das questoes
ambientais ou econdmicas, abrangendo toda a esfera social.

A ideia de desenvolvimento sustentdvel também passou a estar presente na drea
de Computagdo [Rafael 2013]. Nesse contexto, o conceito de TI Verde, definido por
Murugesan (2009), abrange o uso da Tecnologia da Informagdo de forma alinhada aos
principios da sustentabilidade. Inicialmente, antes que o termo ganhasse notoriedade, o
objetivo era apenas adotar processos de construc¢io de produtos com foco na agilidade da
execucdo, uma vez que a principal preocupagdo da TI era a otimizagdo para alcangar a
melhor qualidade possivel. No entanto, percebeu-se que essa abordagem era insuficiente,
pois 0 uso excessivo de recursos gerava impactos ndo apenas ambientais, mas também

sociais, comprometendo, inclusive, a prépria organizacdo responsavel pela producado de
TIL.

Diante disso, a necessidade de gerenciar os recursos aproximou a Tecnologia da
Informagao do conceito de sustentabilidade, pois a combinagdo entre efici€éncia e uso
adequado dos processos contribuiria para a conservagao da natureza e, consequentemente,
beneficiaria a populagdo que usufrui desses produtos.

Dentro do conceito de TI Verde, a otimizacdo de c6digo para o uso eficiente de
energia ¢ um dos pilares fundamentais [WikiC 2022]. A palavra “otimizac¢ao refere-se ao
conjunto de melhorias aplicadas para simplificar, a0 maximo, os processos envolvidos na
solugdo, sem, contudo, alterar sua funcionalidade. Assim, a otimiza¢do ou eficiéncia do
codigo tem como objetivo modificar algoritmos e programas com a finalidade de reduzir
o consumo de recursos, como CPU e memoria.

Desta forma, o objetivo deste Mapeamento Sistemético da Literatura (MSL) é
identificar processos que contribuam para a constru¢do de produtos alinhados ao con-
ceito de TI Verde, com foco especifico no desenvolvimento de software e na eficiéncia do
codigo. Em outras palavras, este artigo busca reunir técnicas que auxiliem na elaboracao
de algoritmos otimizados e eficientes, integrando, simultaneamente, os principios da sus-
tentabilidade.

2. Metodologia de Pesquisa

A metodologia utilizada na execu¢ao do mapeamento sistematico segue as orientacdes de
Kitchenham e Charters [Kitchenham 2007]. A Figura 1 demonstra esse método.

As questdes de pesquisa foram elaboradas para abranger todo o escopo do desen-
volvimento sustentdvel de software e a eficiéncia energética do codigo. Neste contexto,
as questoes de pesquisa deste mapeamento sao as seguintes:

Q1: Quais as préticas e técnicas utilizadas para a elaboracdo de algoritmos otimi-
zados?

Q2: Quais os processos usados na verificagdo da eficiéncia do processamento do
codigo?

Q3: Quais os beneficios e as vantagens, em geral, na aplicacdo das técnicas apre-
sentadas na Q1?

As bibliotecas digitais utilizadas como fonte de busca foram a IEEE Xplore, ACM
Digital Library e Google Académico (manual). A IEEE e a ACM sa@o umas das principais
bases que agregam artigos relacionados a drea de Ciéncia da Computacao. O Google
Académico reune diversos bancos de dados bibliograficos em importantes periddicos e
conferéncias.

Todos os artigos encontrados, a partir da execugdo da string de busca, foram ava-
liados e aplicados os passos conforme os critérios de inclusao e exclusdo estabelecidos no
protocolo. Os seguintes critérios de inclusao considerados foram: (i) Os artigos devem
estar escritos em portugués ou inglés; (ii) Os artigos devem conter as palavras chaves
utilizadas na string de busca no titulo e/ou no resumo e/ou nas palavras-chave; (iii) Os
trabalhos devem abordar os processos algoritmicos; (iv) Considerados apenas artigos pu-
blicados entre 2019 a 2025, esse periodo foi definido pela razdo do tema ganhar mais

destaque recentemente, por isso nesse intervalo de tempo apresenta artigos mais relevan-
tes sobre essa tematica. A negacao desses requisitos fazem parte dos critérios de exclusao,
além de outros itens, como (i) Remogdo de artigos duplicados; (i1) Excluir Artigos que
nao possuem acesso aberto; (iii) Desconsiderar artigos que nao sao de natureza primadria.

A string utilizada para a busca nas bibliotecas foi a seguinte:

Tabela 1. String De Busca

Idioma String de Busca

("sustainable software development" OR "green
software engineering" OR "energy-aware software")
| ng | és AND ("energy efficiency" OR "low-power computing"

OR "power consumption" OR "energy-aware
programming") AND ("code optimization" OR
"algorithm efficiency" OR "software performance"” OR
"resource-efficient coding")

A figura 1 mostra o Processo do Mapeamento Sistematico:

Resultados

Passos

Busca por Base de

Dados: Busca Manual:

X > IEEE =2
Execucao de Busca Google Académico = 40

ACM Digital Library =17

Estudos removidos por duplicagées: n = 3

Duplicagdes, data e o Estudos removidos por estarem fora Artigos restantes
acessibilidade da data:n =22 ap0s as remogoes:

Estudos removidos por falta de acesso: n=19

‘17 n =15

Quantidade de
Leitura do titulo Artigos analisados ex_clul’dos apés a
' | por titulo, resumo e leitura do titulo,
resumo e palavras-chave: n = resumo e
palavras-chave palavras-chave:
I n=1
Artigos analisados por Artigos removidos por:
Leitura Integral dos leitura integral: Nao serem de
artigos n=1a natureza primaria:
n=4
Artigos Artigos Selecionados
Selecionados [“—| apos aaplicacio dos
passos:
n=14

Figura 1. Processo do Mapeamento Sistematico

Observa-se que foram identificadas 59 pesquisas no total, considerando tanto a
busca em bases de dados quanto a busca manual. Inicialmente, foi realizada uma filtragem
para eliminar artigos duplicados, publicados fora do periodo definido no protocolo ou
que ndo possuiam acesso aberto, resultando na exclusdo de 40 deles. Em seguida, foi

feita uma leitura preliminar dos titulos, resumos e palavras-chave dos artigos restantes,
etapa na qual apenas 1 artigo foi removido. Posteriormente, procedeu-se a leitura integral
dos textos restantes, o que levou a exclusdo de mais 4 pesquisas por ndo se tratarem de
estudos primérios. Assim, restaram 14 artigos, que compoem as discussdes apresentadas
na préxima secao.

E importante ressaltar que, ao realizar a busca no Google Académico utilizando
a string definida, foram retornados 271 resultados. No entanto, no processo manual de
triagem, apenas os 40 primeiros artigos foram considerados para avaliagao.

3. Discussao dos Resultados

Os artigos selecionados apds a aplicagdo dos critérios foram submetidos a um estudo com
o objetivo de avaliar e analisar as técnicas e os procedimentos utilizados no desenvolvi-
mento de softwares sustentdveis.

A Tabela 2 apresenta um resumo dos resultados obtidos por meio da andlise dos
14 artigos selecionados no Mapeamento Sistemdtico da Literatura, ordenados por data
de publicacdo. As principais informagdes contidas na tabela sdo: as fontes, as técnicas
utilizadas para a otimizacdo do c6digo (Q1) e os processos empregados na verificacdo dos
resultados (Q2).

Com base nos dados extraidos da tabela, € possivel analisar algumas das técnicas
empregadas na otimizacdo de cddigo, que contribuem para a construcao de softwares
mais eficientes e sustentdveis. Uma das técnicas identificadas foi a Power-Optimised
Software Envelope (POSE) [Roberts et al. 2019], uma ferramenta que auxilia na anélise
do desempenho de sistemas de software, considerando tanto o tempo de execucao quanto
o consumo de energia.

Préticas de melhoria de algoritmos sdo amplamente utilizadas, como a refatoracao
de cddigo [Connolly and O Cinnéide 2024] [Yadav et al. 2024] [Kile et al. 2025], que
permite a simplificacdo de blocos de codigo, além de facilitar a modularizacdo e a
padronizacdo. Esses processos ndo sé garantem a eficiéncia, mas também melhoram a
legibilidade do algoritmo. Tal melhoria pode ser testada utilizando modelos que simu-
lam o desempenho do software, possibilitando uma avaliacdo mais precisa. Além disso,
¢ importante enfatizar que a escolha de trechos de c6digo deve ser analisada com base
no contexto, pois, em determinadas situacdes, um algoritmo pode ser mais adequado a
um cendrio especifico. Um exemplo disso sdo os algoritmos de ordenagao: Bubble Sort e
Quick Sort [Felix and Mohankumar 2024].

Em Python [Reya et al. 2023], a utilizacdo de estruturas de dados eficazes, o uso
de técnicas de programacao dinamica e a escolha adequada de operacdes estdo entre as
praticas comuns para a otimizagao de codigo. Esses processos foram amplamente empre-
gados na melhoria de sistemas voltados a energia edlica [Robinson 2024].

Destaca-se, também, o uso do Energy-Aware Prompting (EAP) [Peng et al. 2024],
uma ferramenta desenvolvida com o objetivo de elaborar prompts otimizados para auxiliar
na criagdo de cédigos com foco em eficiéncia energética.

Em geral, o uso de métricas de desempenho, a construcao eficiente de algoritmos,
a avaliacdo de codigo, a aplicacdo de técnicas de Machine Learning [Biswas 2023], o
teste de comandos e varidveis, a comparacao da execugao de tarefas, a andlise do con-

sumo energético potencial e a implementacdo estratégica de arquiteturas de hardware sdao
préticas comuns que contribuem para o desenvolvimento sustentdvel de software e para a
mitigacdo do consumo energético.

Também € possivel extrair, a partir da tabela, informacdes relevantes sobre o uso
de determinadas ferramentas e técnicas para a verificacdo do processamento de algorit-
mos, uma etapa imprescindivel na avaliagdo do consumo de energia. Um dos modelos cri-
ados para medir o comportamento energético durante a execucdo do codigo foi o Energy
Labelled Transitions System (ELTS) [Ferreira 2022]. Esse modelo permite a defini¢ao
das Basic Energy Units (BETSs), que servem para associar trechos relevantes do cédigo
a elementos especificos do ELTS, possibilitando uma avaliacdo detalhada do consumo
energético por meio do rastreamento entre o codigo e o modelo.

O uso de hardware para medir o consumo de energia também pode ser aplicado,
como no caso do Power Reading United (PRU) [Felix and Mohankumar 2024], utilizado
como um componente integrado ao computador. Esse dispositivo auxiliou no monitora-
mento do consumo energético de programas construidos com os algoritmos Bubble Sort e
Quick Sort, de forma controlada, continua e permitindo comparagdes durante a execugao.

A utilizacao de bibliotecas, como a CodeCarbon para Python [Reya et al. 2023],
também contribui para o monitoramento do consumo de energia. Esse tipo de ferramenta,
baseado na importacdo de bibliotecas especificas, ¢ conhecido como Energy Profiling
[Meinhardt 2024].

Destaca-se, também, o uso de Benchmarks [Rinne 2024], utilizados nao apenas
para medir o consumo de energia, mas também para monitorar a sustentabilidade ambi-
ental por meio da andlise do uso de recursos durante a execugao do c6digo.

O uso de softwares, como o “Performance Profiler”, integrante de uma ferra-
menta da Microsoft, auxiliou na anélise do desempenho do cédigo a medida que ve-
rificava as condi¢des da CPU e da memoéria em ambientes de computacdo em nuvem
[Alsayyah and Ahmed 2020].

Em geral, o monitoramento do uso de energia e do tempo de execucao, 0 acompa-
nhamento do desempenho dos processos do programa e da CPU, a utilizacdo de ferramen-
tas e softwares como auxiliares na medi¢ao do consumo, a realizacao de testes repetitivos
nos codigos, bem como a comparacdo e a andlise dos resultados, sdo praticas comuns na
verificacao do processamento do c6digo e do seu consumo energético.

O uso de ferramentas e a adogao de praticas voltadas a otimizagao e ao desenvol-
vimento sustentdvel de software oferecem diversas vantagens, tais como: reducao signifi-
cativa do consumo de energia, possibilitando um processamento mais ripido e eficiente;
diminuicdo de custos operacionais; contribui¢ao para a computacao verde; padronizagdo
de praticas de codificagdo sustentdvel; melhoria no desempenho do software e no geren-
ciamento de recursos; prolongamento da vida util dos equipamentos; aprimoramento da
experiéncia do usudrio; e reducio da pegada de carbono.

As ferramentas listadas até aqui sdo de grande utilidade para a construg¢do de
codigos otimizados. No entanto, algumas dessas técnicas nao foram testadas em todas as
situacdes possiveis. Um exemplo disso € a refatoracdo de cédigo, apresentada em um dos
artigos, que foi utilizada em uma situacao especifica para comparar os algoritmos Bubble

Tabela 2. Principais informacoes extraidas dos artigos

Fonte

técnicas usados

Processos de verificagao

[Roberts et al. 2019]

Power-Optimised Software

Medigao de consumo de

Envelope (POSE) energia
[Alsayyah and Ahmed 2020] fase de df:senvolwmento ,I’Jso do software }
parametrizada performance profile
. Substituicao de estruturas | Energy Labelled
[Ferreira 2022] de dados Transitions System (ELTS)
[Biswas 2023] Aplicacdo de frameworks e | Execugdo de testes e

Machine Learning

analise dos resultados

[Reya et al. 2023]

Aplicacdo de estruturas de
dados eficientes

Uso de bibliotecas para
monitorar o consumo de
energia

[Connolly and O Cinnéide 2024]

Refatoracdao de Codigo

Calculo de métricas
ponderadas

[Rinne 2024]

Otimizag¢do de estruturas
de dados

Uso de Benchmarks

[Felix and Mohankumar 2024]

Utilizagdo de algoritmos
adequados

Uso da Power Reading
United (PRU)

[Kandimalla and Bolla 2024]

Utilizagdo de algoritmos
adequados

Monitoramento da CPU e
consumo de energia

[Meinhardt 2024]

Otimizacdo dos designs
dos algoritmos

Uso de Energy Profiling

[Peng et al. 2024]

Uso de Energy-Aware
Prompting (EAP)

Medi¢ao do consumo de
energia

[Robinson 2024]

Projecao de design dos
algoritmos

Monitoramento do
desempenho do programa

[Yadav et al. 2024]

Refatoracao de Codigo

Analise do tempo de
execugdo e consumo de
energia

[Kile et al. 2025]

Refatoracao de codigo

Avaliagdo do tempo de
execugdo e uso de CPU

Sort e Quick Sort. Por esse motivo, ndo € possivel afirmar que essas técnicas serao sempre
eficientes quando aplicadas, podendo haver limitacdes ou a revelagdo de problemas nas
ferramentas, o que exige um estudo mais aprofundado sobre essas técnicas.

E importante lembrar que a preocupagio com a construcio de algoritmos otimi-
zados e sustentdveis ainda ¢ um desafio. Como a ideia ganhou mais destaque recente-
mente, algumas empresas que decidiram adotar o conceito em seu processo de produgdo
lidam com a situacdo de desenvolvedores que enfrentam dificuldades na aplicagdo des-
sas técnicas [Kandimalla and Bolla 2024]. Adotar novas medidas requer mudangas no
padrao de desenvolvimento de software e esfor¢o da equipe de TI para se habituar a esse
novo modelo. Contudo, isso provavelmente seja apenas uma questao de tempo até que a
maioria das empresas consiga adaptar-se a essa nova realidade.

4. Consideracoes finais

Em suma, a aplicacdo de técnicas de otimizacdo de cddigo sempre dependera de cer-
tos contextos e fatores, pois ndo existem praticas uniformes que sirvam para todas as
situacdes. As questdes de eficiéncia na execucdo e consumo de energia sdo duas pecas-
chave que norteiam o desenvolvimento de sistemas de software, uma vez que, com essas
ideias em mente, € possivel encontrar o equilibrio entre a rapidez dos processos e 0 gasto
de recursos materiais e energéticos.

Este mapeamento sistemdtico da literatura contribuiu para a listagem e
identificacdo de préticas que colaboram na constru¢do de algoritmos otimizados, sem,
no entanto, aprofundar no funcionamento de cada uma delas. Cada técnica apresenta
variagdes em termos de rendimento e efici€éncia; contudo, nao € possivel determinar quais
métodos sdo mais utilizados, nem a total eficiéncia e desempenho dessas técnicas em
todas as suas aplicagdes.

E importante salientar que o estudo da sustentabilidade na drea de computacao
ganhou destaque mais recentemente. Portanto, ainda € possivel que surjam novas desco-
bertas e conceitos sobre otimizagao de programas e sistemas de software no futuro.

Sendo assim, o mapeamento sistemético da literatura identificou diversas ferra-
mentas que auxiliam no desenvolvimento sustentdvel de software. Como trabalhos fu-
turos, pretende-se dar continuidade ao estudo dessas técnicas, realizando diversos expe-
rimentos para verificar suas limitagdes e aprimora-las. Além disso, planeja-se realizar
uma pesquisa comparativa entre essas ferramentas, no contexto de sustentabilidade de
sistemas.

5. Agradecimentos
O NotebookLM foi utilizado para auxiliar na leitura e na triagem dos artigos selecionados
e o ChatGPT para a andlise e modificagdes da string de busca.

Referéncias

Alsayyah, A. A. and Ahmed, S. (2020). Energy efficient software development techniques
for cloud based applications. International Journal, 9(5).

Biswas, M. P. (2023). Estimating the energy cost of scientific software.

Connolly, D. and O Cinnéide, M. (2024). Weighted metrics for the development of energy
efficient software. In Proceedings of the 1st International Workshop on Designing Soft-
ware, Designing 24, page 64—69, New York, NY, USA. Association for Computing
Machinery.

Felix, P. and Mohankumar, M. (2024). Energy optimization in software development: A
comparative study of sorting techniques.

FERREIRA, A. B. (2010). Diciondrio Aurélio da Lingua Portuguesa. Curitiba, Parana:
Positivo - Livros, 5 edition.

Ferreira, O. A. (2022). Modelling software energy consumption for energy efficiency
analysis.

GROBER, U. (2007). Deep Roots: A Conceptual History of “sustainable Develop-
ment” (Nachhaltigkeit). Discussion papers, Wissenschaftszentrum Berlin fiir Sozi-
alforschung. Berlin: WZB.

Kandimalla, A. M. and Bolla, A. (2024). Green coding practices in software development:
Perceptions, barriers, and strategies for change.

Kile, S. A., Iliyas, I. I., and Bassi, J. Y. (2025). Energy efficient software development: An
integrated approach for green computing and enhanced software performance. BIMA
JOURNAL OF SCIENCE AND TECHNOLOGY (2536-6041), 8(4B):212-224.

Kitchenham, B. Charters, S. (2007). Guidelines for performing systematic literature re-
views in software engineering. Software Engineering Group Department of Computer
Science Keele University.

Meinhardt, M. (2024). Energy-efficiency tactics in software architecture and implemen-
tation.

Peng, H., Gupte, A., Eliopoulos, N. J., Ho, C. C., Mantri, R., Deng, L., Jiang, W.,
Lu, Y.-H., Liufer, K., Thiruvathukal, G. K., et al. (2024). Large language models
for energy-efficient code: Emerging results and future directions. arXiv preprint ar-
Xiv:2410.09241.

Rafael (2013). Ti sustentdvel: conceito, solugdes e consequéncias. Dis-
ponivel em: https://www.devmedia.com.br/ti-sustentavel-conceito-solucoes-e-
consequencias/29394.

Reya, N. F., Ahmed, A., Zaman, T., and Islam, M. M. (2023). Greenpy: evaluating
application-level energy efficiency in python for green computing. Annals of Emerging
Technologies in Computing (AETiC), 7(3):92-110.

Rinne, T. (2024). Adapting sustainable software development methods into agile proces-
ses.

Roberts, S. I., Wright, S. A., Fahmy, S. A., and Jarvis, S. A. (2019). The power-optimised
software envelope. ACM Trans. Archit. Code Optim., 16(3).

Robinson, T. (2024). Sustainable development through green software engineering: An
empirical study in wind energy.

WikiC (2022). Wiki computacao. Disponivel em:
https://wiki.inf.ufpr.br/computacao/doku.php?id=o:otimizacao.

Yadav, A., Usman, M., Sati, A., and Jain, S. (2024). Revolutionizing software develop-
ment: Enhancing quality and performance through code refactoring. In Proceedings of
the 2024 Sixteenth International Conference on Contemporary Computing, 1C3-2024,
page 715-725, New York, NY, USA. Association for Computing Machinery.

