
Desenvolvimento Sustentável de Software e Eficiência
Energética do Código

Um Mapeamento Sistemático

André de Moura e Souza, Patrı́cia Cristiane de Souza, Eunice P. dos Santos Nunes

1Instituto de Computação – Universidade Federal de Mato Grosso (UFMT)
CEP 78.060.900 – Cuiabá, MT – Brazil

andre.souza8@sou.ufmt.br, patricia@ic.ufmt.br, eunice.ufmt@gmail.com

Abstract. Due to the expansion of technological processes, driven by innovati-
ons in software models, the importance of sustainability has gained prominence
in recent years. This article aims to gather and identify methods and practices
that help in the development of software systems aimed at building programs ef-
ficiently, aiming at the conservation of computational and environmental resour-
ces. In addition, this systematic mapping also addresses the main mechanisms
that contribute to the analysis of the application of these techniques.

Resumo. Em razão da expansão dos processos tecnológicos, impulsionada pe-
las inovações nos modelos de software, a importância da sustentabilidade ga-
nhou destaque nos últimos anos. Este artigo tem como objetivo reunir e identi-
ficar métodos e práticas que auxiliam no desenvolvimento de sistemas de soft-
ware voltados para a construção de programas de forma eficiente, visando à
conservação de recursos computacionais e ambientais. Além disso, este mape-
amento sistemático também aborda os principais mecanismos que contribuem
para a análise da aplicação dessas técnicas.

1. Introdução

O termo “sustentabilidade” originou-se em um contexto em que o uso excessivo dos re-
cursos naturais superava sua capacidade de reposição. Segundo [GROBER 2007], a ideia
de sustentabilidade não se restringe apenas ao meio ambiente, mas surge da necessidade
de reflexão consolidada na sociedade, sendo peça-chave para mudanças culturais e para
o desenvolvimento do pensamento coletivo. Em outras palavras, a sustentabilidade, con-
forme [FERREIRA 2010], refere-se à condição ou qualidade de algo que pode ser man-
tido, defendido e sustentado. Trata-se, portanto, de um conceito que vai além das questões
ambientais ou econômicas, abrangendo toda a esfera social.

A ideia de desenvolvimento sustentável também passou a estar presente na área
de Computação [Rafael 2013]. Nesse contexto, o conceito de TI Verde, definido por
Murugesan (2009), abrange o uso da Tecnologia da Informação de forma alinhada aos
princı́pios da sustentabilidade. Inicialmente, antes que o termo ganhasse notoriedade, o
objetivo era apenas adotar processos de construção de produtos com foco na agilidade da
execução, uma vez que a principal preocupação da TI era a otimização para alcançar a
melhor qualidade possı́vel. No entanto, percebeu-se que essa abordagem era insuficiente,
pois o uso excessivo de recursos gerava impactos não apenas ambientais, mas também



sociais, comprometendo, inclusive, a própria organização responsável pela produção de
TI.

Diante disso, a necessidade de gerenciar os recursos aproximou a Tecnologia da
Informação do conceito de sustentabilidade, pois a combinação entre eficiência e uso
adequado dos processos contribuiria para a conservação da natureza e, consequentemente,
beneficiaria a população que usufrui desses produtos.

Dentro do conceito de TI Verde, a otimização de código para o uso eficiente de
energia é um dos pilares fundamentais [WikiC 2022]. A palavra ”otimização”refere-se ao
conjunto de melhorias aplicadas para simplificar, ao máximo, os processos envolvidos na
solução, sem, contudo, alterar sua funcionalidade. Assim, a otimização ou eficiência do
código tem como objetivo modificar algoritmos e programas com a finalidade de reduzir
o consumo de recursos, como CPU e memória.

Desta forma, o objetivo deste Mapeamento Sistemático da Literatura (MSL) é
identificar processos que contribuam para a construção de produtos alinhados ao con-
ceito de TI Verde, com foco especı́fico no desenvolvimento de software e na eficiência do
código. Em outras palavras, este artigo busca reunir técnicas que auxiliem na elaboração
de algoritmos otimizados e eficientes, integrando, simultaneamente, os princı́pios da sus-
tentabilidade.

2. Metodologia de Pesquisa
A metodologia utilizada na execução do mapeamento sistemático segue as orientações de
Kitchenham e Charters [Kitchenham 2007]. A Figura 1 demonstra esse método.

As questões de pesquisa foram elaboradas para abranger todo o escopo do desen-
volvimento sustentável de software e a eficiência energética do código. Neste contexto,
as questões de pesquisa deste mapeamento são as seguintes:

Q1: Quais as práticas e técnicas utilizadas para a elaboração de algoritmos otimi-
zados?

Q2: Quais os processos usados na verificação da eficiência do processamento do
código?

Q3: Quais os benefı́cios e as vantagens, em geral, na aplicação das técnicas apre-
sentadas na Q1?

As bibliotecas digitais utilizadas como fonte de busca foram a IEEE Xplore, ACM
Digital Library e Google Acadêmico (manual). A IEEE e a ACM são umas das principais
bases que agregam artigos relacionados à área de Ciência da Computação. O Google
Acadêmico reúne diversos bancos de dados bibliográficos em importantes periódicos e
conferências.

Todos os artigos encontrados, a partir da execução da string de busca, foram ava-
liados e aplicados os passos conforme os critérios de inclusão e exclusão estabelecidos no
protocolo. Os seguintes critérios de inclusão considerados foram: (i) Os artigos devem
estar escritos em português ou inglês; (ii) Os artigos devem conter as palavras chaves
utilizadas na string de busca no tı́tulo e/ou no resumo e/ou nas palavras-chave; (iii) Os
trabalhos devem abordar os processos algorı́tmicos; (iv) Considerados apenas artigos pu-
blicados entre 2019 a 2025, esse perı́odo foi definido pela razão do tema ganhar mais



destaque recentemente, por isso nesse intervalo de tempo apresenta artigos mais relevan-
tes sobre essa temática. A negação desses requisitos fazem parte dos critérios de exclusão,
além de outros itens, como (i) Remoção de artigos duplicados; (ii) Excluir Artigos que
não possuem acesso aberto; (iii) Desconsiderar artigos que não são de natureza primária.

A string utilizada para a busca nas bibliotecas foi a seguinte:

Tabela 1. String De Busca

A figura 1 mostra o Processo do Mapeamento Sistemático:

Figura 1. Processo do Mapeamento Sistemático

Observa-se que foram identificadas 59 pesquisas no total, considerando tanto a
busca em bases de dados quanto a busca manual. Inicialmente, foi realizada uma filtragem
para eliminar artigos duplicados, publicados fora do perı́odo definido no protocolo ou
que não possuı́am acesso aberto, resultando na exclusão de 40 deles. Em seguida, foi



feita uma leitura preliminar dos tı́tulos, resumos e palavras-chave dos artigos restantes,
etapa na qual apenas 1 artigo foi removido. Posteriormente, procedeu-se à leitura integral
dos textos restantes, o que levou à exclusão de mais 4 pesquisas por não se tratarem de
estudos primários. Assim, restaram 14 artigos, que compõem as discussões apresentadas
na próxima seção.

É importante ressaltar que, ao realizar a busca no Google Acadêmico utilizando
a string definida, foram retornados 271 resultados. No entanto, no processo manual de
triagem, apenas os 40 primeiros artigos foram considerados para avaliação.

3. Discussão dos Resultados
Os artigos selecionados após a aplicação dos critérios foram submetidos a um estudo com
o objetivo de avaliar e analisar as técnicas e os procedimentos utilizados no desenvolvi-
mento de softwares sustentáveis.

A Tabela 2 apresenta um resumo dos resultados obtidos por meio da análise dos
14 artigos selecionados no Mapeamento Sistemático da Literatura, ordenados por data
de publicação. As principais informações contidas na tabela são: as fontes, as técnicas
utilizadas para a otimização do código (Q1) e os processos empregados na verificação dos
resultados (Q2).

Com base nos dados extraı́dos da tabela, é possı́vel analisar algumas das técnicas
empregadas na otimização de código, que contribuem para a construção de softwares
mais eficientes e sustentáveis. Uma das técnicas identificadas foi a Power-Optimised
Software Envelope (POSE) [Roberts et al. 2019], uma ferramenta que auxilia na análise
do desempenho de sistemas de software, considerando tanto o tempo de execução quanto
o consumo de energia.

Práticas de melhoria de algoritmos são amplamente utilizadas, como a refatoração
de código [Connolly and Ó Cinnéide 2024] [Yadav et al. 2024] [Kile et al. 2025], que
permite a simplificação de blocos de código, além de facilitar a modularização e a
padronização. Esses processos não só garantem a eficiência, mas também melhoram a
legibilidade do algoritmo. Tal melhoria pode ser testada utilizando modelos que simu-
lam o desempenho do software, possibilitando uma avaliação mais precisa. Além disso,
é importante enfatizar que a escolha de trechos de código deve ser analisada com base
no contexto, pois, em determinadas situações, um algoritmo pode ser mais adequado a
um cenário especı́fico. Um exemplo disso são os algoritmos de ordenação: Bubble Sort e
Quick Sort [Felix and Mohankumar 2024].

Em Python [Reya et al. 2023], a utilização de estruturas de dados eficazes, o uso
de técnicas de programação dinâmica e a escolha adequada de operações estão entre as
práticas comuns para a otimização de código. Esses processos foram amplamente empre-
gados na melhoria de sistemas voltados à energia eólica [Robinson 2024].

Destaca-se, também, o uso do Energy-Aware Prompting (EAP) [Peng et al. 2024],
uma ferramenta desenvolvida com o objetivo de elaborar prompts otimizados para auxiliar
na criação de códigos com foco em eficiência energética.

Em geral, o uso de métricas de desempenho, a construção eficiente de algoritmos,
a avaliação de código, a aplicação de técnicas de Machine Learning [Biswas 2023], o
teste de comandos e variáveis, a comparação da execução de tarefas, a análise do con-



sumo energético potencial e a implementação estratégica de arquiteturas de hardware são
práticas comuns que contribuem para o desenvolvimento sustentável de software e para a
mitigação do consumo energético.

Também é possı́vel extrair, a partir da tabela, informações relevantes sobre o uso
de determinadas ferramentas e técnicas para a verificação do processamento de algorit-
mos, uma etapa imprescindı́vel na avaliação do consumo de energia. Um dos modelos cri-
ados para medir o comportamento energético durante a execução do código foi o Energy
Labelled Transitions System (ELTS) [Ferreira 2022]. Esse modelo permite a definição
das Basic Energy Units (BETs), que servem para associar trechos relevantes do código
a elementos especı́ficos do ELTS, possibilitando uma avaliação detalhada do consumo
energético por meio do rastreamento entre o código e o modelo.

O uso de hardware para medir o consumo de energia também pode ser aplicado,
como no caso do Power Reading United (PRU) [Felix and Mohankumar 2024], utilizado
como um componente integrado ao computador. Esse dispositivo auxiliou no monitora-
mento do consumo energético de programas construı́dos com os algoritmos Bubble Sort e
Quick Sort, de forma controlada, contı́nua e permitindo comparações durante a execução.

A utilização de bibliotecas, como a CodeCarbon para Python [Reya et al. 2023],
também contribui para o monitoramento do consumo de energia. Esse tipo de ferramenta,
baseado na importação de bibliotecas especı́ficas, é conhecido como Energy Profiling
[Meinhardt 2024].

Destaca-se, também, o uso de Benchmarks [Rinne 2024], utilizados não apenas
para medir o consumo de energia, mas também para monitorar a sustentabilidade ambi-
ental por meio da análise do uso de recursos durante a execução do código.

O uso de softwares, como o ”Performance Profiler”, integrante de uma ferra-
menta da Microsoft, auxiliou na análise do desempenho do código à medida que ve-
rificava as condições da CPU e da memória em ambientes de computação em nuvem
[Alsayyah and Ahmed 2020].

Em geral, o monitoramento do uso de energia e do tempo de execução, o acompa-
nhamento do desempenho dos processos do programa e da CPU, a utilização de ferramen-
tas e softwares como auxiliares na medição do consumo, a realização de testes repetitivos
nos códigos, bem como a comparação e a análise dos resultados, são práticas comuns na
verificação do processamento do código e do seu consumo energético.

O uso de ferramentas e a adoção de práticas voltadas à otimização e ao desenvol-
vimento sustentável de software oferecem diversas vantagens, tais como: redução signifi-
cativa do consumo de energia, possibilitando um processamento mais rápido e eficiente;
diminuição de custos operacionais; contribuição para a computação verde; padronização
de práticas de codificação sustentável; melhoria no desempenho do software e no geren-
ciamento de recursos; prolongamento da vida útil dos equipamentos; aprimoramento da
experiência do usuário; e redução da pegada de carbono.

As ferramentas listadas até aqui são de grande utilidade para a construção de
códigos otimizados. No entanto, algumas dessas técnicas não foram testadas em todas as
situações possı́veis. Um exemplo disso é a refatoração de código, apresentada em um dos
artigos, que foi utilizada em uma situação especı́fica para comparar os algoritmos Bubble



Tabela 2. Principais informações extraı́das dos artigos

Fonte técnicas usados Processos de verificação

[Roberts et al. 2019] Power-Optimised Software
Envelope (POSE)

Medição de consumo de
energia

[Alsayyah and Ahmed 2020] fase de desenvolvimento
parametrizada

Uso do software
”performance profile”

[Ferreira 2022] Substituição de estruturas
de dados

Energy Labelled
Transitions System (ELTS)

[Biswas 2023] Aplicação de frameworks e
Machine Learning

Execução de testes e
análise dos resultados

[Reya et al. 2023] Aplicação de estruturas de
dados eficientes

Uso de bibliotecas para
monitorar o consumo de
energia

[Connolly and Ó Cinnéide 2024] Refatoração de Código Cálculo de métricas
ponderadas

[Rinne 2024] Otimização de estruturas
de dados Uso de Benchmarks

[Felix and Mohankumar 2024] Utilização de algoritmos
adequados

Uso da Power Reading
United (PRU)

[Kandimalla and Bolla 2024] Utilização de algoritmos
adequados

Monitoramento da CPU e
consumo de energia

[Meinhardt 2024] Otimização dos designs
dos algoritmos Uso de Energy Profiling

[Peng et al. 2024] Uso de Energy-Aware
Prompting (EAP)

Medição do consumo de
energia

[Robinson 2024] Projeção de design dos
algoritmos

Monitoramento do
desempenho do programa

[Yadav et al. 2024] Refatoração de Código
Análise do tempo de
execução e consumo de
energia

[Kile et al. 2025] Refatoração de código Avaliação do tempo de
execução e uso de CPU



Sort e Quick Sort. Por esse motivo, não é possı́vel afirmar que essas técnicas serão sempre
eficientes quando aplicadas, podendo haver limitações ou a revelação de problemas nas
ferramentas, o que exige um estudo mais aprofundado sobre essas técnicas.

É importante lembrar que a preocupação com a construção de algoritmos otimi-
zados e sustentáveis ainda é um desafio. Como a ideia ganhou mais destaque recente-
mente, algumas empresas que decidiram adotar o conceito em seu processo de produção
lidam com a situação de desenvolvedores que enfrentam dificuldades na aplicação des-
sas técnicas [Kandimalla and Bolla 2024]. Adotar novas medidas requer mudanças no
padrão de desenvolvimento de software e esforço da equipe de TI para se habituar a esse
novo modelo. Contudo, isso provavelmente seja apenas uma questão de tempo até que a
maioria das empresas consiga adaptar-se a essa nova realidade.

4. Considerações finais

Em suma, a aplicação de técnicas de otimização de código sempre dependerá de cer-
tos contextos e fatores, pois não existem práticas uniformes que sirvam para todas as
situações. As questões de eficiência na execução e consumo de energia são duas peças-
chave que norteiam o desenvolvimento de sistemas de software, uma vez que, com essas
ideias em mente, é possı́vel encontrar o equilı́brio entre a rapidez dos processos e o gasto
de recursos materiais e energéticos.

Este mapeamento sistemático da literatura contribuiu para a listagem e
identificação de práticas que colaboram na construção de algoritmos otimizados, sem,
no entanto, aprofundar no funcionamento de cada uma delas. Cada técnica apresenta
variações em termos de rendimento e eficiência; contudo, não é possı́vel determinar quais
métodos são mais utilizados, nem a total eficiência e desempenho dessas técnicas em
todas as suas aplicações.

É importante salientar que o estudo da sustentabilidade na área de computação
ganhou destaque mais recentemente. Portanto, ainda é possı́vel que surjam novas desco-
bertas e conceitos sobre otimização de programas e sistemas de software no futuro.

Sendo assim, o mapeamento sistemático da literatura identificou diversas ferra-
mentas que auxiliam no desenvolvimento sustentável de software. Como trabalhos fu-
turos, pretende-se dar continuidade ao estudo dessas técnicas, realizando diversos expe-
rimentos para verificar suas limitações e aprimorá-las. Além disso, planeja-se realizar
uma pesquisa comparativa entre essas ferramentas, no contexto de sustentabilidade de
sistemas.

5. Agradecimentos

O NotebookLM foi utilizado para auxiliar na leitura e na triagem dos artigos selecionados
e o ChatGPT para a análise e modificações da string de busca.

Referências

Alsayyah, A. A. and Ahmed, S. (2020). Energy efficient software development techniques
for cloud based applications. International Journal, 9(5).

Biswas, M. P. (2023). Estimating the energy cost of scientific software.



Connolly, D. and Ó Cinnéide, M. (2024). Weighted metrics for the development of energy
efficient software. In Proceedings of the 1st International Workshop on Designing Soft-
ware, Designing ’24, page 64–69, New York, NY, USA. Association for Computing
Machinery.

Felix, P. and Mohankumar, M. (2024). Energy optimization in software development: A
comparative study of sorting techniques.

FERREIRA, A. B. (2010). Dicionário Aurélio da Lı́ngua Portuguesa. Curitiba, Paraná:
Positivo - Livros, 5 edition.

Ferreira, O. A. (2022). Modelling software energy consumption for energy efficiency
analysis.

GROBER, U. (2007). Deep Roots: A Conceptual History of “sustainable Develop-
ment” (Nachhaltigkeit). Discussion papers, Wissenschaftszentrum Berlin für Sozi-
alforschung. Berlin: WZB.

Kandimalla, A. M. and Bolla, A. (2024). Green coding practices in software development:
Perceptions, barriers, and strategies for change.

Kile, S. A., Iliyas, I. I., and Bassi, J. Y. (2025). Energy efficient software development: An
integrated approach for green computing and enhanced software performance. BIMA
JOURNAL OF SCIENCE AND TECHNOLOGY (2536-6041), 8(4B):212–224.

Kitchenham, B. Charters, S. (2007). Guidelines for performing systematic literature re-
views in software engineering. Software Engineering Group Department of Computer
Science Keele University.

Meinhardt, M. (2024). Energy-efficiency tactics in software architecture and implemen-
tation.

Peng, H., Gupte, A., Eliopoulos, N. J., Ho, C. C., Mantri, R., Deng, L., Jiang, W.,
Lu, Y.-H., Läufer, K., Thiruvathukal, G. K., et al. (2024). Large language models
for energy-efficient code: Emerging results and future directions. arXiv preprint ar-
Xiv:2410.09241.

Rafael (2013). Ti sustentável: conceito, soluções e consequências. Dis-
ponı́vel em: https://www.devmedia.com.br/ti-sustentavel-conceito-solucoes-e-
consequencias/29394.

Reya, N. F., Ahmed, A., Zaman, T., and Islam, M. M. (2023). Greenpy: evaluating
application-level energy efficiency in python for green computing. Annals of Emerging
Technologies in Computing (AETiC), 7(3):92–110.

Rinne, T. (2024). Adapting sustainable software development methods into agile proces-
ses.

Roberts, S. I., Wright, S. A., Fahmy, S. A., and Jarvis, S. A. (2019). The power-optimised
software envelope. ACM Trans. Archit. Code Optim., 16(3).

Robinson, T. (2024). Sustainable development through green software engineering: An
empirical study in wind energy.

WikiC (2022). Wiki computação. Disponı́vel em:
https://wiki.inf.ufpr.br/computacao/doku.php?id=o:otimizacao.



Yadav, A., Usman, M., Sati, A., and Jain, S. (2024). Revolutionizing software develop-
ment: Enhancing quality and performance through code refactoring. In Proceedings of
the 2024 Sixteenth International Conference on Contemporary Computing, IC3-2024,
page 715–725, New York, NY, USA. Association for Computing Machinery.


