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Abstract. A P`-decomposition of a graph G is a set of paths with ` edges in G
that cover the edge set of G. Favaron, Genest, and Kouider (2010) conjectured
that every (2k + 1)-regular graph that contains a perfect matching admits a
P2k+1-decomposition. They also verified this conjecture for 5-regular graphs
without cycles of length 4. In 2015, Botler, Mota, and Wakabayashi extended
this result to 5-regular graphs without triangles. In this paper, we verify this
conjecture for (2k+1)-regular graphs that contain the k-th power of a spanning
cycle; and for 5-regular graphs that contain certain spanning 4-regular Cayley
graphs.

Resumo. Uma P`-decomposição de um grafo G é um conjunto de cami-
nhos aresta-disjuntos com ` arestas em G que cobre o conjunto de arestas
de G. Favaron, Genest, e Kouider (2010) conjecturaram que todo grafo
(2k + 1)-regular que contém um emparelhamento perfeito admite uma P2k+1-
decomposição. Eles também verificaram essa conjectura para grafos 5-
regulares sem ciclos de comprimento 4. Em 2015, Botler, Mota, e Wakabayashi
estenderam esse resultado para grafos 5-regulares sem triângulos. Neste artigo,
verificamos essa conjectura para grafos (2k + 1)-regulares que contêm uma
k-ésima potência de um ciclo gerador; e para grafos 5-regulares que contêm
alguns tipos de grafos de Cayley 4-regulares e geradores.

1. Introduction
All graphs in this paper are simple. We denote by P` the path with ` edges, and a

P`-decomposition of a graph G is a set D of edge-disjoint copies of P` in G that cover its
edge set. Kotzig (1957) and Bouchet and Fouquet (1983) proved that a 3-regular graph
G admits a P3-decomposition if and only if G contains a perfect matching. Favaron,
Genest, and Kouider (2010) extended this result by proving that every 5-regular graph
that contains a perfect matching and no cycles of length 4 admits a P5-decomposition;
and proposed the following conjecture.
Conjecture 1 (Favaron–Genest–Kouider, 2010). If G is a (2k + 1)-regular graph that
contains a perfect matching, then G admits a P2k+1-decomposition.
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In 2015, Botler, Mota, and Wakabayashi verified Conjecture 1 for triangle-free
5-regular graphs, and, in 2017, Botler, Mota, Oshiro, and Wakabayashi generalized this
result for (2k + 1)-regular graphs with girth at least 2k.

A 5-regular graph contains a perfect matching if and only if it contains a spanning
4-regular graph. In this paper, we explore Conjecture 1 for (2k + 1)-regular graphs that
contain special spanning 2k-regular graphs as follows. Throughout the text, Γ denotes a
finite group of order n; + denotes the group operation of Γ; and 0 denotes the identity
of Γ. For each x ∈ Γ, we denote by −x the element y ∈ Γ such that x + y = 0, and
the operation − denotes the default binary operation − : (x, y) 7→ x + (−y). Let S ⊆ Γ
be a set not containing the identity of Γ, and such that −x ∈ S for every x ∈ S. The
Cayley graph X(Γ, S) is the graph H with V (H) = Γ, and E(H) =

{
xy : y − x ∈ S

}
(see [Godsil and Royle 2013]). We allow S not to be a set generating Γ, which implies
X(Γ, S) not to be necessarily connected. We say that H is simply commutative if (i)
x + y = y + x for every x, y ∈ S, and (ii) x + y = 0 for x, y ∈ S only if y = −x 6= x.
Since 0 /∈ S, condition (ii) guarantees that H is a simple graph. In such a graph, the
neighborhood of a vertex v ∈ Γ is N(v) = {x + v : x ∈ S}. Although the definition of
Cayley graphs can be made more general, we consider only non-directed simple graphs
in order to tackle Conjecture 1.

We present two results regarding Conjecture 1 for graphs that contain spanning
Cayley graphs. We verify it for (2k + 1)-regular graphs that contain the k-th power of
a spanning cycle (see Section 2); and for 5-regular graphs that contain spanning sim-
ply commutative 4-regular Cayley graphs (see Section 3). Due to space limitations, we
present only sketches of some proofs.

2. Regular graphs that contain spanning powers of cycles
Given positive integers k and n, the k-th power of the cycle on n vertices, denoted

by Ck
n, is the graph on the vertex set {0, . . . , n− 1} such that, for every vertex v, we have

x ∈ N(v) if and only if x = v + r (mod n), where r ∈ {−k, . . . ,−1} ∪ {1, . . . , k}.
Given a perfect matching M of a graph G we say that a P`-decomposition D of a graph
G is M -centered if for every P = a0a1 . . . aiai+1 . . . a`−1a` ∈ D, we have aiai+1 ∈ M
for i = (`− 1)/2. The next results are examples of M -centered decomposition.
Proposition 1. If G is a 5-regular graph that contains a spanning copy K of K4,4, and
M = G− E(K), then G admits an M -centered P5-decomposition.

Proof. Let (R,L) be the bipartition of K, where R = {r1, r2, r3, r4} and L =
{l1, l2, l3, l4}. Since K is a complete bipartite graph, if xy ∈ M , then either x, y ∈
R or x, y ∈ L. Thus, we may suppose, without loss of generality, that M =
{r1r2, r3r4, l1l2, l3l4}. Therefore, {l1r1l3l4r2l2, l3r3l1l2r4l4, r1l2r3r4l1r2, r3l4r1r2l3r4}
is an M -centered decomposition of G, as desired.

The following proposition is the main result of this section.
Proposition 2. Let n, k ∈ N with k < n/2. If G is a (2k+ 1)-regular graph on n vertices
that contains a copy C of Ck

n, and M = G−E(C), then G admits an M -centered P2k+1-
decomposition.

Proof. Let V (C) = {0, . . . , n − 1} be as above. Since C is a 2k-regular graph, M is a
perfect matching of G. Given i ∈ V (C), let Qi be the path v0v1 . . . vk in which v0 = i;



and, for j = 1, . . . , k, we have vj = vj−1 + j if j is odd; and vj = vj−1 − j if j is even.
Note that for every j = 1, . . . , k, the path Qi contains an edge xy such that |x − y| = j,
and hence the set Q =

{
Qi : i ∈ V (C)

}
is a Pk-decomposition of C. Also, we have

V (Qi) =
{
i+r (mod n) : r ∈ {−bk/2c,−bk/2c+1, . . . , dk/2e}

}
. Now, given an edge

e = ij ∈ M , let Pe = Qi ∪ {ij} ∪ Qj . Since Qi and Qj have, respectively, i and j as
end vertices, and E(Qi)∩E(Qj) = ∅, the graph Pe is a trail of length 2k + 1. Therefore,
the set D = {Pe : e ∈ M} is a decomposition of G into trails of length 2k + 1. We claim
that, in fact, D is a P2k+1-decomposition of G. For that, we prove that if ij ∈ M , then
V (Qi) ∩ V (Qj) = ∅. Indeed, note that for every e = ij ∈ M , we have |i − j| > k,
otherwise ij ∈ E(C). Now, suppose that there is a vertex v in V (Qi) ∩ V (Qj). Then,
there are r1, r2 with −bk/2c ≤ r1, r2 ≤ dk/2e, and such that i + r1 = v = j + r2.
Suppose, without loss of generality, that i > j. Then, we have r2 − r1 = i − j > k, but
r2 − r1 ≤ dk/2e+ bk/2c = k, a contradiction.

Naturally, Propositions 1 and 2 can be extended to the following result, which is
used in the proof of Theorem 1.
Corollary 1. If G is a 5-regular graph that contains a 4-factor K in which every compo-
nent is isomorphic to K4,4 or to the 2nd power of a cycle, and M = G − E(K), then G
admits an M -centered P5-decomposition.

3. 5-regular graphs that contain special spanning Cayley graphs
In this section, we explore 5-regular graphs that contain spanning simply com-

mutative 4-regular Cayley graphs. Given two elements g, r of Γ, we say that {g, r} is a
simple commutative generator (SCG) if (i) 0 /∈ {g, r, 2g, 2r}; (ii) g /∈ {r,−r}; and (iii)
g + r = r + g. Let S = {g,−g, r,−r}, and consider the Cayley graph C = X(Γ, S). By
construction, C is a simply commutative Cayley graph (see Section 1). Conditions (i) and
(ii) guarantee that C is a simple graph, while condition (iii) introduces the main restriction
explored in this paper. In this case, we say that C is the graph generated by {g, r}, and
that {g, r} is the generator of C. Given an SCG {g, r}, we say that a simple 5-regular
graph G is a {g, r}-graph if G contains a spanning Cayley graph generated by {g, r}. In
this case, we denote the Cayley graph by Cg,r, and the perfect matching G − E(Cg,r) by
Mg,r. Given a vertex u ∈ V (G), we say that an edge uv ∈ E(G) is a green (resp. red)
out-edge of u if v = u + g (resp. v = u + r).

In 2015, Botler, Mota, and Wakabayashi verified Conjecture 1 for triangle-free
5-regular graphs. For that they (i) find an initial decomposition of G into paths and trails;
and (ii) perform some exchanges of edges between the elements ofD, preserving a special
invariant, while minimizing the number of trails that are not paths. The general case
of the proof of our main theorem follows this framework, but consists of three steps.
First, from the structure of Cayley graphs, we find an initial decomposition into trails of
length 5. Then, we show how to exchange edges to obtain a decomposition in which the
bad elements (the trails that are not paths) are distributed in circular fashions. Finally, we
show how to deal with these “cycles of bad elements”.
Theorem 1. Every {g, r}-graph admits a P5-decomposition.

Skecth of the proof. First, if g = 2r (or r = 2g), then each component of Cg,r is a 2nd
power of a cycle. Also, one can prove that if 2g + 2r = 0 and 2g − 2r = 0, then each
component of Cg,r is a copy of K4,4. In these cases, the statement follows by Corollary 1.



Thus, we assume that g 6= 2r, r 6= 2g, 2g + 2r 6= 0 and 2g − 2r 6= 0. Now, for each
e = uv ∈Mg,r, let Te = x′xuvyy′ be the trail in which ux and vy are the green out-edges
of u and v, respectively, and xx′ and yy′ are the red out-edges of x and y, respectively. It
is not hard to check that D = {Te : e ∈ Mg,r} is a decomposition of G. One can prove
that, since G is a {g, r}-graph, an element T = x′xuvyy′ of D is either a path, or uvyy′ is
a triangle, and T has no other cycle (see Figure 1). In the later case, we say that T is a bad
element, and that u and v are the connection vertices of T , and y is the tricky vertex of T .
If the tricky vertex of a bad element T is not a connection vertex of any other element, then
we say that T is a free bad element. By repeatedly exchanging edges between a free bad
element and a different element of the decomposition, we obtain a new decomposition D′
of G into paths of length 5 and bad elements that are not free. Then, these bad elements
are distributed in circular fashions, which we call bad chains. Now, we perform an extra
exchange of edges in order to convert a bad element into a path, “breaking” a bad chain,
and allowing us to perform the exchanges of the second step.
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Figure 1. A path and a trail of length 5.

4. Concluding remarks
Due to the underlying group structure, we believe that the techniques developed

here can be extended to (2k+1)-regular graphs that contain more general spanning Cayley
graphs, or that contain special spanning Schreier Graphs, which could give us significant
insights to solving the general case of Conjecture 1 (see [Gross 1977]).
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