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Abstract. We are interested in embedding trees T with ∆(T ) ≤ 4 in a rectangu-
lar grid, such that the vertices of T correspond to grid points, while edges of T
correspond to non-intersecting straight segments of the grid lines. The aim is to
minimize the maximum number of bends of a path of T . We provide a quadratic-
time algorithm for this problem. By applying this algorithm, we obtain an upper
bound on the number of bends of EPG representations of VPT ∩ EPT graphs.

1. Introduction
The problem of grid embedding is that of drawing a graph G onto a rectangular two-
dimensional grid (called simply grid) such that each vertex v ∈ V (G) corresponds
to a grid point (an intersection of a horizontal and a vertical grid line) and the edges
of G correspond to paths of the grid. Grid embedding of graphs has been considered
with different perspectives [Beck and Storandt 2020, Liu et al. 1998, Schnyder 1990]. In
[Liu et al. 1998], linear-time algorithms are described for embedding planar graphs hav-
ing their edges drawn as non-intersecting paths in the grid, such that the maximum number
of bends of any edge is minimized, as well as the total number of bends.

In this paper, we are interested in a variation of this problem: given a planar
graph G, find a grid embedding of G such that the edges of G correspond to pairwise
non-intersecting paths of the grid, having no bends. The aim is to minimize the maximum
number of bends of any path in the embedding, over all paths of G. For instance, the
tree in Figure 1(a) is drawn in such a way that there is a path having 5 bends (the path
joining o and m), and 5 is the maximum number of bends in that drawing. However,
this maximum number of bends can be decreased to 3 bends (path joining e and f ), as
Figure 1(b) illustrates.

A motivation for this problem lies in finding certain grid representations of VPT
∩ EPT graphs, as defined next. Given a tree T , called host tree, and a set P of nontrivial
paths in T , the vertex (resp. edge) intersection graph of paths in a tree (VPT (resp. EPT))
of P is the graph denoted by VPT(P) (resp. EPT(P)) having P as vertex set and two
vertices adjacent if the corresponding paths have in common at least one vertex (resp.
edge). We say that 〈T,P〉 is a VPT (resp. EPT) representation of G.

Instead of trees, the graphs we are interested have a grid G as the underlying struc-
ture from which a collection of nontrivial paths P is considered. The edge intersection
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Figure 1. Two possible modelsM1 (left) andM2 (right) of the same tree T .

graph of paths of a grid of P is the graph denoted by EPG(P) having P as vertex set and
two vertices adjacent if the corresponding paths have in common at least one edge of the
grid. We say that P is an EPG representation of G. A turn of a path at a grid point is
called a bend and the grid point in which a bend occurs is called a bend point. An EPG
representation is a Bk-EPG representation if each path has at most k bends. A graph that
admits a Bk-EPG representation is called Bk-EPG.

2. Embedding trees in a grid
Let T be a tree such that ∆(T ) ≤ 4. Consider the problem of embedding such a tree
in a grid G, so that the vertices must be placed at grid points and the edges drawn as
non-intersecting paths of G with no bends, which we will call linear embedding of T ,
or simply a model of T . Figure 1 depicts two possible models corresponding to a same
tree. Given a path Q = v1, v2, . . . , vk of T , and a modelM of T , the number of bends
of Q is defined to be the number of bends of the grid path consisting of the concatenation
of paths of the grid corresponding to the edges (v1, v2), (v2, v3), . . . , (vk−1, vk) inM. In
Figure 1(a), the path o, h, d, c, g, i, j,m has 5 bends, and only 1 bend in Figure 1(b).

Among all possible models, consider the problem of finding one in which the
maximum number of bends of a path of T , over all of them, is minimum. Note that, since
every path of a tree is contained in a leaf-to-leaf path, a path that bends the most in a given
model is a leaf-to-leaf path, and therefore those are the only ones to be considered. More
formally, letM(T ) be the set of all possible models of a given tree T and u, v ∈ V (T ) be
leaves of T . The number of bends of the path connecting u and v in a modelM∈M(T )
is denoted by bM(u, v). Therefore, bM1(o,m) = 5 and bM2(o,m) = 1. Let

b(M) = max{bM(u, v) | u and v are leaves in T}

denote the number of bends of the leaf-to-leaf path that bends the most inM, and

b(T ) = min{b(M) | M ∈M(T )}

the minimum number of bends of a model, over all of them. Figure 1(a) depicts a model
M1 of a tree T such that b(M1) = 5, therefore b(T ) ≤ 5. Figure 1(b) shows another
modelM2 for which b(M2) = 3 and, therefore, b(T ) ≤ 3. It is possible to show that no
modelM of T has b(M) = 2 and, therefore, b(T ) = 3. GivenM∈M(T ), let b`M(p, v)
denote the maximum number of bends found in a single path having as extreme vertices p
and a leaf of T , over all paths that contain v ∈ V (T ). That is,

b`M(p, v) = max{bM(p, f) | f is a leaf of T and the path p, . . . , f contains v} .



Also, define
b`T (p, v) = min{b`M(p, v) | M ∈M(T )} .

Let M ∈ M(T ) and v ∈ V (T ). Let {ui
M(v) | 1 ≤ i ≤ d(v)} be N(v) and

biM(v) = b`M(v, ui
M(v)). For d(v) < i ≤ 4, define “virtual” neighbors ui

M(v) = ∅ for
which biM(v) = −1. Assume that the neighbors (both real and virtual) are ordered so
that biM(v) ≥ bi+1

M (v) for all 1 ≤ i < 4. As examples, u1
M2

(i) = g (and b1M2
(i) = 2),

u2
M2

(i) = j (and b2M2
(i) = 1), u3

M2
(i) = l (and b3M2

(i) = 0), and u4
M2

(i) = ∅ (and
b4M2

(i) = −1). We say that v is balanced if u1
M(v) and u2

M(v) are mutually in the same
horizontal or vertical grid line inM (and, therefore, so are u3

M(v) and u4
M(v)).

The algorithm consists of the following steps. First, let v0, v1, . . . , vn−1 be a se-
quence of V (T ) such that each vi is adjacent to exactly one vertex pi for all 1 ≤ i < n,
where pi = vj for some 0 ≤ j < i. Let M be a model having a single vertex v0 at
some grid point. For i = 1, 2, . . . , n − 1, add to M the vertex vi attached to the grid
point of pi, in any free horizontal or vertical grid line of pi. Then, call the procedure of
balancing vi. Such a procedure consists of traversing T rooted at vi in post-order. The
operation of visiting a vertex v consists of making v balanced by rearranging inM the
drawing of the four subtrees of v rooted at ui

M(v) (for 1 ≤ i ≤ 4), potentially rotating
and rescaling them to fit. Regarding the time complexity of the algorithm, it is possible
to keep the values of ui

M(v) stored for each v ∈ V (T ) and 1 ≤ i ≤ 4, and update them
right after the balance step in constant time, based on which subtrees had their positions
exchanged, and on the respective values of ui

M(w) from the neighbors w ∈ N(v). Since
the algorithm performs n−1 post-order traversals in T , the algorithm runs in O(n2) time.
Theorem 1. Given a tree T , letM be the model produced by the execution of the algo-
rithm on input T . Then, b(M) = b(T ).

3. EPG representations of VPT ∩ EPT graphs
We provide an upper bound on the number of bends of an EPG representation of
VPT ∩ EPT graphs. The VPT ∩ EPT graphs are those that can be represented in host trees
with maximum degree at most 3 [Golumbic and Jamison 1985]. In [Alcón et al. 2015],
this class is characterized by a family of minimal forbidden induced subgraphs.

Let G be a VPT graph and 〈T,P〉 a VPT representation of G. Consider V (G) =
{v1, v2, . . . , vn}, V (T ) = {u1, u2, . . . , um} and P = {Qi | vi ∈ V (G)}. Build an EPG
representationR = {Pi | vi ∈ V (G)} of G in a grid G in the following way.

First, letM be a model of T with the minimum number of bends on the grid G,
as described in Section 2. For all edges ei of T in M, let e′i be their midpoints in grid
G. For all ui ∈ V (T ) such that d(ui) = 1, build an auxiliary path, P ′ui

, going from ui

to e′, where e is the edge to which ui is incident. For all ui ∈ V (T ) such that d(ui) = 2,
let e1 and e2 be the edges incident to ui. Build an auxiliary path P ′ui

having e′1 and e′2 as
endpoints. For all ui ∈ V (T ) such that d(ui) = 3, let e1, e2 and e3 be the edges incident
to ui. Note that, at least one of them is vertical and at least one of them is horizontal.
Without loss of generality, assume e1 is vertical and e2 is horizontal. Build an auxiliary
path P ′ui

having e′1 and e′2 as endpoints. For all Qi ∈ P , let ui be an endpoint of Qi.
Initialize Pi to be coincident to Qi. Next, consider the following cases:

- if d(ui) = 2, enlarge Pi by stretching its endpoint so that it coincides with the
endpoint of P ′ui

that does not belong to Pi yet.



- If d(ui) = 3 and Pi ∩ P ′ui
= {ui}, enlarge Pi by stretching its endpoint so that it

coincides with the endpoint of P ′ui
which does not impose a new bend in Pi.

- If d(ui) = 3 and Pi ∩ P ′ui
6= {ui}, it implies that ui is an endpoint of Pi and Pi

already contains one of the endpoints of P ′ui
. In that case, enlarge Pi by stretching

its endpoint so that it coincides with the other endpoint of P ′ui
.

Remove the paths P ′ui
for all 1 ≤ i ≤ m. Such a construction builds a Bk-EPG repre-

sentation of G with k ≤ b(T ). Note that, if a path Qi with ui as an extreme vertex has
b(T ) bends, then d(ui) ≤ 2. Therefore, either Pi = Qi or Pi is Qi with their extreme
vertices stretched without any new bends. Thus, Pi has b(T ) bends and, therefore, R has
a maximum of b(T ) bends in any of its paths. Figure 2(b) presents an EPG representation
R = {Pi | 1 ≤ i ≤ 10} derived for the family P = {Qi | 1 ≤ i ≤ 10} of Figure 2(a).

(a) (b)

Figure 2. Construction of a Bk-EPG representation with k ≤ b(T ).

4. Conclusion
In this paper, we presented an algorithm to embed a tree T with ∆(T ) ≤ 4 in a rectangular
grid, such that the maximum number of bends of any path of T is minimized. We also
described how to use such models to construct EPG representations of VPT ∩ EPT graphs
providing an upper bound on the number of bends of such graphs.
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