A new sufficient condition for the existence of 3-kernels

Alonso Ali, Orlando Lee
${ }^{1}$ Instituto de Computação - Universidade Estadual de Campinas (UNICAMP)
Campinas - SP - Brazil
\{alonso.goncalves,lee\}@ic.unicamp.br

Abstract

Let D be a digraph and k be a positive integer. We say a subset N of $V(D)$ is a k-kernel of D if it is both k-independent and $(k-1)$-absorbent. A short chord of a closed trail $C=\left(v_{0}, v_{1}, \ldots, v_{t}\right)$ is an arc $a=\left(v_{i}, v_{j}\right)$ which does not belong to C and the distance from v_{i} to v_{j} in C is exactly two. The spacing between two chords $e=(u, v)$ and $f=(x, y)$ in C is the distance from u to x in C. A set of chords in a closed trail C has an odd spacing if at least two chords have an odd spacing. In this work, we prove that if D is a strongly connected digraph where every odd cycle has a short chord and every even closed trail has three short chords with an odd spacing, then D has a 3-kernel.

1. Introduction

We assume that all digraphs have no loops or multiple arcs. The vertex set of a digraph D is denoted by $V(D)$ and its arc set by $A(D)$. All trails, paths and cycles are considered to be directed. An arc $(u, v) \in A(D)$ is symmetric if $(v, u) \in A(D)$. A digraph D is strongly connected if for every pair of vertices $u, v \in V(D)$, there exists a path from u to v in D. The distance between two vertices u and v in a digraph D, denoted by $d_{D}(u, v)$, is the length of the shortest path from u to v in D. We say that a closed trail or a cycle is even (resp. odd) if its length is even (resp. odd). For undefined notation, we refer the reader to [Bondy and Murty 2008].

A chord of a closed trail $C=\left(c_{0}, \ldots, c_{n-1}, c_{0}\right)$ is an arc $a=\left(c_{i}, c_{j}\right)$, where $c_{i}, c_{j} \in V(C)$ but $a \notin A(C)$. If the distance from c_{i} to c_{j} in C is two, we say that it is a short chord. The spacing between two chords $e=(u, v)$ and $f=(x, y)$ of C is the distance from u to x in C. A set of chords in a closed trail C has an odd spacing if at least two chords have an odd spacing. Figure 1 illustrates a cycle with two odd spaced short chords.

Figure 1. A cycle with two odd spaced short chords.

Figure 2. An example of a digraph D and its 2-closure $C^{2}(D)$. Those arcs in $C^{2}(D)$ which are not in D are dashed and painted red.

A kernel of a digraph D is a set $K \subseteq V(D)$ which is independent in D and for every vertex $u \in V(D) \backslash K$, there exists an arc (u, v), where $v \in K$. A digraph is kernelperfect if every induced subdigraph has a kernel. A subset N of $V(D)$ is k-independent if for every pair of vertices $u, v \in N$, the distance from u to v in D is at least k; also, N is ℓ-absorbent if for every vertex $u \in V(D) \backslash N$, there exists $v \in N$ such that the distance from u to v is at most ℓ. We say that a subset N of $V(D)$ is a (k, ℓ)-kernel of D if it is both k-independent and ℓ-absorbent. A k-kernel is a $(k, k-1)$-kernel and a kernel is a 2-kernel.

The concept of kernel was introduced by von Neumann and Morgenstern in 1944 von Neumann and Morgenstern 1944] in the context of game theory to model social and economic interactions. Richardson [Richardson 1946] proved that every digraph which has no odd cycle has a kernel, a seminal result of the field. In light of Richardson's Theorem, kernel theory gained a lot of attention and was thoroughly researched, yielding new results regarding the existence of kernels in digraphs with odd cycles. In 1980, Kwasnik [Kwaśnik 1980] proposed the concept of k-kernels and later generalized Richardson's Theorem to k-kernels [Kwaśnik 1981].

In this work, we prove the following.
Theorem 1. Let D be a digraph. If D is a strongly connected digraph where every odd cycle has a short chord and every even closed trail has three short chords with an odd spacing, then D has a 3-kernel.

2. A sufficient condition for the existence of 3-kernels in digraphs

In this section, we prove Theorem 1. An useful tool for demonstrating the existence of 3 -kernels in digraphs is Lemma 3, which states that a digraph has a 3-kernel if, and only if, its 2 -closure has a kernel. Before we present Lemma 3, we introduce the definition of the k-closure of a digraph.
Definition 2. Let D be a digraph. The k-closure of D, denoted by $C^{k}(D)$, is the digraph D^{\prime}, where $V\left(D^{\prime}\right)=V(D)$ and $(u, v) \in A\left(D^{\prime}\right)$ if $d_{D}(u, v) \leq k$. Figure 2 illustrates an example of a digraph and its 2-closure.
Lemma 3 ([Galeana-Sánchez and Hernández-Cruz 2014]). Let $k \geq 3$ be an integer. Let D be a digraph and let $K \subseteq V(D)$. The subset of vertices K is a k-kernel of D if, and only if, K is a kernel of $C^{(k-1)}(D)$.

A particularly useful theorem was proved by Duchet in 1980.

Theorem 4 ([Duchet 1980] $)$. If every cycle of a digraph D has a symmetric arc, then D is kernel-perfect.

The strategy of the proof to our theorem is to show that the 2 -closure of a digraph D that satisfies the hypothesis from Theorem 1 has a symmetric arc in every cycle. From Theorem 4, the 2-closure of D has a kernel; therefore, by Lemma 3 the digraph has a 3-kernel.

Before we present the demonstration, we must introduce the main lemma used in the proof.
Lemma 5. Let D be a strongly connected digraph. If every odd cycle in D has a short chord and every even closed trail in D has three short chords with an odd spacing, then for every $(u, v) \in A(D)$ there is a path of length at most two from v to u in D.

Proof. Let $f=(u, v) \in A(D)$. Since D is strongly connected, there is a minimal path $T=\left(t_{0}=v, \ldots, t_{s}=u\right)$ from v to u in D. Note that $C=T \cup(u, v)$ is a cycle. Clearly, if $|C|=3$, then $|T|=2$ and the result follows. Assume, for the sake of contradiction, that $|T|>2$ and $|C|$ is even. Since T is minimal, the only possible short chords in C are $\left(t_{s-1}, v\right)$ and $\left(u, t_{1}\right)$, which contradicts the hypothesis of the existence of three short chords in C. Assume then, for the sake of contradiction, that $|T|>2$ and $|C|$ is odd. Due to the hypothesis and the minimality of T, C has a short chord: $\left(t_{s-1}, v\right)$ or $\left(u, t_{1}\right)$. Let (a, b) be one of such chords. Note that $(a, b) \cup(b, T, a)$ is a cycle of even length and, therefore, must have three short chords. Analogously to the former case, one of the chords connects two vertices in T, a contradiction. Hence, $|T| \leq 2$.

We are now ready to demonstrate Theorem 1 .
Proof of Theorem 1. Let $D^{\prime}=C^{2}(D)$. It follows from Lemma 3 that D has a 3 -kernel if D^{\prime} has a kernel. We show that every cycle in D^{\prime} has a symmetric arc and, by Theorem 4 , D^{\prime} has a kernel.

Assume that there exists a cycle $C=\left(c_{0}, c_{1}, \ldots, c_{n-1}, c_{0}\right)$ in D^{\prime} with no symmetric arc. Choose such cycle C with the shortest length in D^{\prime}. Note that no arc in C exists in D, because it would be symmetric: from Lemma 5, if $\left(c_{i}, c_{i+1}\right) \in A(D)$, then $\left(c_{i+1}, c_{i}\right) \in A\left(D^{\prime}\right)$. Therefore, $d_{D}\left(c_{i}, c_{i+1}\right)=2$, for every $i \leq n$ (notation modulo n).

Since every arc $\left(c_{i}, c_{i+1}\right)$ of C is in $A\left(D^{\prime}\right)$ - but not in $A(D)$ - for every arc $\left(c_{i}, c_{i+1}\right)$ in C there exists a vertex $c_{i,(i+1)} \in V(D)$ such that $\left(c_{i}, c_{i,(i+1)}, c_{i+1}\right)$ exists in D. Let C^{\prime} be the closed trail resulting from the substitution of every $\left(c_{i}, c_{i+1}\right)$ in C for $\left(c_{i}, c_{i,(i+1)}, c_{i+1}\right)$. Figure 3 illustrates an example of C and C^{\prime}.

Since C is a cycle, every vertex in C is distinct. Also, note that C^{\prime} is an even closed trail and, by the hypothesis, it has three short chords with an odd spacing. Since every vertex in C^{\prime} that is in C has the same index parity and the three short chords of C^{\prime} have an odd spacing, one of the short chords in C^{\prime} must be one of the arcs of C. Given that such chord exists in $A(D)$, it is symmetric in D^{\prime} from Lemma 5 . Therefore, C has a symmetric arc.

Since every cycle of D^{\prime} has at least one symmetric arc, it follows from Theorem 4 that D^{\prime} has a kernel. Hence, from Lemma 3, D has a 3 -kernel.

Figure 3. An illustration of a cycle C, in dashed red, and a closed trail C^{\prime}, in black.

References

Bondy, J. and Murty, U. (2008). Graph Theory. Springer Publishing Company, Incorporated, 1st edition.

Duchet, P. (1980). Graphes noyau-parfaits. Ann. Discrete Math., 9:93-101. Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part II.

Galeana-Sánchez, H. and Hernández-Cruz, C. (2014). On the existence of (k, l)-kernels in infinite digraphs: A survey. Discussiones Mathematicae Graph Theory, 34(3):431466.

Kwaśnik, M. (1980). On (k, l)-kernels on graphs and their products. PhD thesis, Technical University of Wroc law.

Kwaśnik, M. (1981). The generalization of richardson theorem. Discuss. Math., IV:1113.

Richardson, M. (1946). On weakly ordered systems. Bull. Amer. Math. Soc., 52:113-116. von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton University Press, Princeton, New Jersey.

