
A new sufficient condition for the existence of 3-kernels
Alonso Ali, Orlando Lee

1Instituto de Computação – Universidade Estadual de Campinas (UNICAMP)
Campinas – SP – Brazil

{alonso.goncalves,lee}@ic.unicamp.br

Abstract. Let D be a digraph and k be a positive integer. We say a subset N of
V (D) is a k-kernel of D if it is both k-independent and (k − 1)-absorbent. A
short chord of a closed trail C = (v0, v1, . . . , vt) is an arc a = (vi, vj) which
does not belong to C and the distance from vi to vj in C is exactly two. The
spacing between two chords e = (u, v) and f = (x, y) in C is the distance from
u to x in C. A set of chords in a closed trail C has an odd spacing if at least two
chords have an odd spacing.
In this work, we prove that if D is a strongly connected digraph where every
odd cycle has a short chord and every even closed trail has three short chords
with an odd spacing, then D has a 3-kernel.

1. Introduction
We assume that all digraphs have no loops or multiple arcs. The vertex set of a digraph
D is denoted by V (D) and its arc set by A(D). All trails, paths and cycles are considered
to be directed. An arc (u, v) ∈ A(D) is symmetric if (v, u) ∈ A(D). A digraph D is
strongly connected if for every pair of vertices u, v ∈ V (D), there exists a path from u to
v in D. The distance between two vertices u and v in a digraph D, denoted by dD(u, v),
is the length of the shortest path from u to v in D. We say that a closed trail or a cycle
is even (resp. odd) if its length is even (resp. odd). For undefined notation, we refer the
reader to [Bondy and Murty 2008].

A chord of a closed trail C = (c0, . . . , cn−1, c0) is an arc a = (ci, cj), where
ci, cj ∈ V (C) but a 6∈ A(C). If the distance from ci to cj in C is two, we say that it is
a short chord. The spacing between two chords e = (u, v) and f = (x, y) of C is the
distance from u to x in C. A set of chords in a closed trail C has an odd spacing if at
least two chords have an odd spacing. Figure 1 illustrates a cycle with two odd spaced
short chords.

Figure 1. A cycle with two odd spaced short chords.
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Figure 2. An example of a digraph D and its 2-closure C2(D). Those arcs in C2(D)
which are not in D are dashed and painted red.

A kernel of a digraph D is a set K ⊆ V (D) which is independent in D and for
every vertex u ∈ V (D)\K, there exists an arc (u, v), where v ∈ K. A digraph is kernel-
perfect if every induced subdigraph has a kernel. A subset N of V (D) is k-independent
if for every pair of vertices u, v ∈ N , the distance from u to v in D is at least k; also, N is
`-absorbent if for every vertex u ∈ V (D) \N , there exists v ∈ N such that the distance
from u to v is at most `. We say that a subset N of V (D) is a (k, `)-kernel of D if it is
both k-independent and `-absorbent. A k-kernel is a (k, k − 1)-kernel and a kernel is a
2-kernel.

The concept of kernel was introduced by von Neumann and Morgenstern in 1944
[von Neumann and Morgenstern 1944] in the context of game theory to model social and
economic interactions. Richardson [Richardson 1946] proved that every digraph which
has no odd cycle has a kernel, a seminal result of the field. In light of Richardson’s Theo-
rem, kernel theory gained a lot of attention and was thoroughly researched, yielding new
results regarding the existence of kernels in digraphs with odd cycles. In 1980, Kwasnik
[Kwaśnik 1980] proposed the concept of k-kernels and later generalized Richardson’s
Theorem to k-kernels [Kwaśnik 1981].

In this work, we prove the following.
Theorem 1. Let D be a digraph. If D is a strongly connected digraph where every odd
cycle has a short chord and every even closed trail has three short chords with an odd
spacing, then D has a 3-kernel.

2. A sufficient condition for the existence of 3-kernels in digraphs
In this section, we prove Theorem 1. An useful tool for demonstrating the existence of
3-kernels in digraphs is Lemma 3, which states that a digraph has a 3-kernel if, and only
if, its 2-closure has a kernel. Before we present Lemma 3, we introduce the definition of
the k-closure of a digraph.
Definition 2. Let D be a digraph. The k-closure of D, denoted by Ck(D), is the digraph
D′, where V (D′) = V (D) and (u, v) ∈ A(D′) if dD(u, v) ≤ k. Figure 2 illustrates an
example of a digraph and its 2-closure.
Lemma 3 ([Galeana-Sánchez and Hernández-Cruz 2014]). Let k ≥ 3 be an integer.
Let D be a digraph and let K ⊆ V (D). The subset of vertices K is a k-kernel of D if,
and only if, K is a kernel of C(k−1)(D).

A particularly useful theorem was proved by Duchet in 1980.



Theorem 4 ([Duchet 1980]). If every cycle of a digraph D has a symmetric arc, then D
is kernel-perfect.

The strategy of the proof to our theorem is to show that the 2-closure of a di-
graph D that satisfies the hypothesis from Theorem 1 has a symmetric arc in every cycle.
From Theorem 4, the 2-closure of D has a kernel; therefore, by Lemma 3 the digraph has
a 3-kernel.

Before we present the demonstration, we must introduce the main lemma used in
the proof.

Lemma 5. Let D be a strongly connected digraph. If every odd cycle in D has a short
chord and every even closed trail in D has three short chords with an odd spacing, then
for every (u, v) ∈ A(D) there is a path of length at most two from v to u in D.

Proof. Let f = (u, v) ∈ A(D). Since D is strongly connected, there is a minimal path
T = (t0 = v, . . . , ts = u) from v to u in D. Note that C = T ∪ (u, v) is a cycle. Clearly,
if |C| = 3, then |T | = 2 and the result follows. Assume, for the sake of contradiction,
that |T | > 2 and |C| is even. Since T is minimal, the only possible short chords in C
are (ts−1, v) and (u, t1), which contradicts the hypothesis of the existence of three short
chords in C. Assume then, for the sake of contradiction, that |T | > 2 and |C| is odd.
Due to the hypothesis and the minimality of T , C has a short chord: (ts−1, v) or (u, t1).
Let (a, b) be one of such chords. Note that (a, b) ∪ (b, T, a) is a cycle of even length and,
therefore, must have three short chords. Analogously to the former case, one of the chords
connects two vertices in T , a contradiction. Hence, |T | ≤ 2. �

We are now ready to demonstrate Theorem 1.

Proof of Theorem 1. Let D′ = C2(D). It follows from Lemma 3 that D has a 3-kernel if
D′ has a kernel. We show that every cycle in D′ has a symmetric arc and, by Theorem 4,
D′ has a kernel.

Assume that there exists a cycle C = (c0, c1, . . . , cn−1, c0) in D′ with no sym-
metric arc. Choose such cycle C with the shortest length in D′. Note that no arc in C
exists in D, because it would be symmetric: from Lemma 5, if (ci, ci+1) ∈ A(D), then
(ci+1, ci) ∈ A(D′). Therefore, dD(ci, ci+1) = 2, for every i ≤ n (notation modulo n).

Since every arc (ci, ci+1) of C is in A(D′) – but not in A(D) – for every arc
(ci, ci+1) in C there exists a vertex ci,(i+1) ∈ V (D) such that (ci, ci,(i+1), ci+1) exists in
D. Let C ′ be the closed trail resulting from the substitution of every (ci, ci+1) in C for
(ci, ci,(i+1), ci+1). Figure 3 illustrates an example of C and C ′.

Since C is a cycle, every vertex in C is distinct. Also, note that C ′ is an even
closed trail and, by the hypothesis, it has three short chords with an odd spacing. Since
every vertex in C ′ that is in C has the same index parity and the three short chords of C ′

have an odd spacing, one of the short chords in C ′ must be one of the arcs of C. Given
that such chord exists in A(D), it is symmetric in D′ from Lemma 5. Therefore, C has a
symmetric arc.

Since every cycle of D′ has at least one symmetric arc, it follows from Theorem 4
that D′ has a kernel. Hence, from Lemma 3, D has a 3-kernel. �
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Figure 3. An illustration of a cycle C, in dashed red, and a closed trail C ′, in black.
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