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Abstract. We study a generalization of graph colouring defined as follows. Given
a graph G, a (star, k)-colouring of G is a colouring c : V (G)→ {1, . . . , k}
such that every colour class induces a star. We propose an O∗(2O(tw)ktw)-time
algorithm that decides whether a graph G of treewidth at most tw admits a
(star, k)-colouring. This resolves an open problem posed by Angelini et al. in
2017. Our approach can be extended to other defective colouring models.

1. Motivation

Let G = (V,E) be a graph and c : V (G) → {1, . . . , k} be a colouring of the vertices
of G into k colour classes. For each colour i, the monochromatic components of i are the
connected subgraphs induced by vertices that received colour i in c. A variety of different
combinatorial problems can be defined depending on which constraints are required on
the structure of these components. For example, if one requires that each monochromatic
component is an isolated vertex — and, hence, each colour class is an independent set —
then the problem coincides with the traditional VERTEX COLOURING PROBLEM.

In a defective colouring, however, a monochromatic component may contain edges,
provided that they satisfy some established structure. There are numerous variants of
DEFECTIVE COLOURING models, which consider bounds on the maximum vertex de-
gree [4, 5], diameter [6], size [1], acyclicity [7], or other structural properties of the
monochromatic components. Arguably, the most studied defective colouring models are
those considering bounds on the maximum vertex degree and the size of each monochro-
matic component; the latter is also known as the CLUSTERED COLOURING PROBLEM.
We refer the reader to the work of Wood for a survey on DEFECTIVE and CLUSTERED
COLOURINGS [8].

In this work, we focus on “star colourings”, introduced by Dorbec et al. in 2014 [6].
A colouring of a simple graph G with k colours is a (star, k)-colouring if each monochro-
matic component is a star, i.e., a subgraph of G isomorphic to K1,p, for some integer
p ≥ 0. Note that a monochromatic component may be an isolated vertex.

Since stars are both acyclic and have bounded diameter, this problem lies in be-
tween two of the aforementioned variants of defective colouring models, studied inde-
pendently. Nonetheless, not much is known about the star colouring problem; in fact,
there are only two published works concerning it. Dorbec et al. showed that deciding
whether a graph G admits a (star, 2)-colouring is NP-complete even if G is a planar graph
with maximum degree ∆(G) = 4, or a triangle-free graph [6]. In 2017, Angelini et al.
showed that deciding whether a planar graph with bounded maximum degree admits a
(star, 3)-colouring is also NP-complete. Furthermore, they showed that there is a linear-
time algorithm that decides whether there exists a (star, 2)-colouring on partial 2-trees [2].
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Our contribution. Angelini et al. questioned if it would be possible to efficiently de-
cide whether a graph G admits a (star, 2)-colouring if G has bounded treewidth; note
that Courcelle’s metatheorem [3] already provides an FPT classification for this problem,
though with an impractical running time. We answer Angelini et al.’s question in the af-
firmative and extend the results, proposing an O∗(2O(tw)ktw)-time algorithm that solves
the (star, k)-colouring problem for any fixed k on graphs with treewidth at most tw .

2. An FPT algorithm on graphs of bounded treewidth

Let G be a simple graph and T = (T, {Bx}x∈V (T )) be a nice tree decomposition of G,
with T being the tree and Bx, the bag corresponding to node x in T . Recall that in a nice
tree decomposition there are four kinds of nodes: leaf, introduce, forget and join. Also,
we may assume that Bx = ∅ if x is a leaf or the root node. Given a node x, we denote
by Gx the subgraph of G induced by the vertices in the bags of x and every descendant
node in T . Also, the treewidth of G is denoted by tw .

For a node x of T , we let cx : Bx → {1, . . . , k} and px : Bx → {I,E,L,C} be,
respectively, a colouring of bag Bx and a position function associated with bag Bx. The
main idea is that, in any (star, k)-colouring of G, each vertex may play one of four roles (or
positions) in a monochromatic component: an isolated vertex (I); the end of a monochro-
matic edge (E); a leaf (L) of a monochromatic star with at least three vertices; or the
centre (C) of a monochromatic star with at least three vertices.

We consider the subproblem of determining whether Gx admits a (star, k)-colour-
ing whose monochromatic components agree with cx and px, in which case we say the
subproblem is feasible. More precisely, given the specification of the subproblem, we
define the boolean state E[x, cx, px] as TRUE if there exists some (star, k)-colouring s
of G such that, for every v ∈ Bx, we have s(v) = cx(v) and the position of v in its
monochromatic component of s corresponds to px(v).

Observe that the definition of the subproblem implies that G admits a (star, k)-
colouring if and only if E[r, ∅, ∅] = TRUE, where r is the root node and ∅ denotes the
empty function. Thus, we can solve the (global) problem by computing the boolean values
E[x, cx, px] of a dynamic programming table for every bag Bx, in a bottom-up fashion.
Each type of node is considered separately in the following paragraphs.

Leaf node. If x is a leaf node, there is only one state, and E[x, ∅, ∅] = TRUE.

Introduce node. Let x be an introduce node with child y such that Bx = By ∪ {v}, for
some v 6∈ By. We analyse each case considering the value of px(v).

• If px(v) = I, we analyse the colour assigned to the neighbours of v in cx. In order
to guarantee that v is an isolated vertex in the monochromatic component, we re-
quire that each u ∈ N(v) does not receive the same colour as v. Also, functions cx
and px must induce a feasible subproblem when restricted to the vertices of Gy.
• If px(v) = E, we are considering the introduction of a vertex that creates a mono-

chromatic edge in cx. Therefore, we analyse the neighbours of v, requiring that
exactly one neighbour u has the same colour as v. Also, u must be the end of an
edge (i.e., px(u) = E). Finally, we check whether the state corresponding to the
subproblem induced for Gy in which u is an isolated vertex is feasible.



• If px(v) = L, then E[x, cx, px] may be TRUE only if v has a single neighbour u
which is the centre of the monochromatic star containing v. This implies that the
colour of u must be the same as that of v and px(u) = C. Furthermore, restricting
a feasible colouring of Gx to the vertices of Gy may lead to one of two cases.
First, u is also the centre of a monochromatic star in Gy, which has at least two
leaves; or, second, u is the end of an edge in Gy. We look up at the states of the
subproblem restricted to Gy for both cases, and set E[x, cx, px] to TRUE if either
subproblem is feasible.
• Finally, if px(v) = C, we may set E[x, cx, px] to TRUE only if there exist at least

two leaves in the monochromatic star which has v as its centre. If this is the case,
then we look up the state corresponding to the subproblem restricted to vertices
of Gy in which each of these leaves appears as an isolated vertex in Gy.

Forget node. Suppose that x is a forget node with child y such that Bx = By \ {v},
for some v 6∈ Bx. Observe that Gx = Gy in this case and, therefore, we need only enu-
merate all possible extensions of functions cx and px to domain By. This implies that
E[x, cx, px] = TRUE if and only if there exist functions c′ and p′ of domain y such that,
for all v ∈ Bx, c′(v) = cx(v), p′(v) = px(v), and E[y, c′, p′] = TRUE.

Join node. Finally, suppose that x is a join node in T . Let y and z be the children of x
in T such that Bx = By = Bz, and recall that bag Bx is a separator of Gx, as illustrated
in Figure 1. Given a colouring cx and a position function px, we enumerate all pairs of
position functions py and pz on Bx which are consistent with px, and set E[x, cx, px] to
TRUE if there exists some pair for which E[y, cx, py] and E[z, cx, pz] are TRUE.

To determine whether py and pz are consistent with px, we consider the restriction
of a feasible colouring to subgraphs Gy and Gz, and verify the roles which the vertices
in Bx may play in each subgraph. To exemplify what we mean by this, consider the white
monochromatic component in Figure 1. In subfigure (a), observe that this monochromatic
component is a star with three leaves in both Gx (the whole graph) and Gy (highlighted
to the left), whereas in subfigure (b), it appears only as a monochromatic edge in Gz

(highlighted to the right).

Thus, it suffices to check each monochromatic component induced by cx on ver-
tices of Bx and analyse the valid position configurations at which the vertices of such a
component may appear in Gy and Gz. First, if a monochromatic component has at least
three vertices, it must be a star such that the centre has position C, and the other vertices
have position L. In this case, py, pz and px must agree on the vertices of the component.

Next, suppose that the monochromatic component is composed of an edge with
vertices u and v. There are two possibilities. In the first case, we require that both u

GzGy

(a)
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Figure 1. Bag Bx viewed as a separator of Gx.



and v are endpoints of an edge, i.e., px(u) = px(v) = E; thus, we must have that
py(u), py(v), pz(u) and pz(v) are also endpoints of an edge. In the second case, one
vertex, say u, is the centre of a monochromatic star while the other, v, is a leaf. Then, we
must have that py(u) = C, py(v) = L and pz(u) = E, pz(v) = E, or vice-versa; this case
is illustrated by the white monochromatic component in Figure 1. It may also be the case
in which py(u) = pz(u) = C and py(v) = pz(v) = L.

Finally, suppose the monochromatic component is composed of a single vertex v.
If px(v) = I, then we must also have py(v) = pz(v) = I. If px(v) = E, then py(v) = I
and pz(v) = E, or vice-versa. Analogously, if px(v) = L, then py(v) = L and pz(v) = I,
or vice-versa. Lastly, if px(v) = C, then we might have py(v) = I and pz(v) = C, or
vice-versa; or we might have that both py(v) and pz(v) are either C or E. The case in
which py(v) = pz(v) = E is illustrated by the black vertices in Figure 1.

The time to compute the value of a state E[·, ·, ·] is maximum for join nodes. In
the worst case, each monochromatic component is an isolated vertex, and thus the number
of pairs of position functions py, pz is bounded by 2O(tw). Since there are 2O(tw)ktw states
for each bag, we have derived the following theorem.

Theorem 1. Given a simple graph G and a nice tree decomposition of G of width tw ,
deciding whether G admits a (star, k)-colouring can be done in O∗(2O(tw)ktw)-time.

3. Extensions and concluding remarks
We considered the (star, k)-colouring problem on graphs of bounded treewidth, showing
that the problem is FPT when parameterized by both k and the treewidth of the graph.
Our approach to solving (star, k)-colourings, which is essentially based on “roles” which
the vertices play in the monochromatic components, can be extended to other defective
colouring models as well. For instance, consider the (cograph, k)-colouring problem,
which requires each monochromatic component to be free of induced paths on four ver-
tices. For this problem, we can define a position function px : Bx → {I,T,E,C} in which
a coloured vertex may be, respectively, an isolated vertex, an end of a monochromatic
edge, a tip of a monochromatic P3, or its centre. For future work, we want to charac-
terize other defective colouring models which admit FPT algorithms parameterized by
treewidth using our technique.
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