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Abstract. This work1 aims to investigate the Green Vehicle Routing Problem
(G-VRP), which is an NP-Hard problem that generalizes the Vehicle Routing
Problem (VRP) and integrates it with the green logistics. In the G-VRP, electric
vehicles with limited autonomy can be recharged at Alternative Fuel Stations
(AFSs) to keep visiting customers. This research proposes MILP formulations,
valid inequalities, and preprocessing conditions.

Resumo. Este trabalho2 tem como objetivo investigar o Problema de Rotea-
mento de Veı́culos Verdes (G-VRP), que é um problema NP-Difı́cil que general-
iza o Problema de Roteamento de Veı́culos (VRP) integrado com a logı́stica
verde. No G-VRP, veı́culos com autonomia limitada podem reabastecer em
Estações de Combustı́vel Alternativo (AFSs) para visitar clientes. Esta pesquisa
propõe formulações MILP, desigualdades, e condições de preprocessamento.

1. Problem formulation
In the G-VRP proposed by [Erdoğan and Miller-Hooks 2012], a set of customers with
known services times must be attended by a set of homogeneous alternative fuel vehicles,
which operate from a common depot. These vehicles have a lower autonomy in terms of
traveled distance, forcing them to stop and refuel in AFSs. Each customer must be visited
once by exactly one vehicle and the time spent by a vehicle in a route cannot exceed a
maximum operation time. The objective is to reduce the total traveled distance.

Consider a complete directed graph G(V,E), where V = C ∪ F ∪ {v0}, where C
is the set of customers, and F is the set of AFSs. The si � 0 is the customer vi service
time, and sf � 0 is the AFS vf refueling time. Vertex v0 ∈ V is the depot and E is the
set of edges. Edges (i, j) ∈ E have metric costs cij > 0. The ρ > 0 is the vehicle energy
consumption rate, and eij = cijρ is the required energy to traverse edge (i, j). The α > 0
is the vehicle average speed, and tij =

cij
α

is the required time to traverse the edge (i, j).
In the depot, there is a set M = {1, ..., |C|} of homogeneous vehicles with an autonomy
of β and maximum operation time T . The goal of G-VRP consists in defining at most
|M | routes with minimum cost satisfying the following constraints:

• Each route begins and ends at the vertex depot v0;
• Each vertex vi ∈ C is visited once by exactly one route;
• Each vertex vf ∈ F can be visited multiple times by multiple routes, thus, each

route might have subcycles;
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• The autonomy of a vehicle decreases in eij when it traverses edge (i, j) ∈ E. It
is not possible for a vehicle to traverse an edge with a required energy higher than
its autonomy. When the vehicle visits an AFS, its autonomy is restored to β;

• The time spent by a route must not exceed T .

The variables used in the MILP formulation are xk
ij which equals 1 if (i, j) ∈

E is traversed in route k ∈ M , and 0 otherwise (Theorem 2.1.1 shows that in an optimal
solution each edge will be used at most once); and yi which represents the vehicle energy
level when visiting vi ∈ V . The following MILP formulation is proposed:
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�
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cijx

k
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�
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(5)

yf = y0 = β ∀vf ∈ F (6)

yj � yi − eijx
k
ij + β(1− xk

ij) ∀vj ∈ C, ∀vi ∈ V, ∀k ∈ M (7)

β � yi � eijx
k
ij ∀vi ∈ C, ∀vj ∈ V, ∀k ∈ M (8)

xk
ijeij � β ∀vi, vj ∈ V, ∀k ∈ M (9)
�

(i,j)∈E
xk
ij(tij + si) � T ∀k ∈ M (10)

xk
ij ∈ N ∀vi, vj ∈ V, ∀k ∈ M (11)

yj ∈ R+ ∀vj ∈ V (12)

The objective function (1) minimizes the total cost. Constraints (2) says that at
most one edge will leave the depot in route k. Constraints (3) imply that the number
of times a vehicle k enters vertex vi is equals to the number of times the same vehicle
exits the same vertex. Constraints 4 state each customer is visited once by exactly one
vehicle. Constraints (5) are connectivity constraints. Constraints (6) guarantee that the
vehicle energy level is recharged when it visits an AFS or the depot. Constraints (7)
update the vehicle energy level at every customer. Constraints (8) define the maximum
energy level and implies that an edge can only be traversed if the vehicle energy level is
sufficient. Constraints (9) forbid edges with cost greater than the maximum energy level
capacity. Constraints (10) limit the time of a route by T . Constraints (11) and (12) are
variables domains. Note that there is an exponential number of connectivity constraints
(5), therefore a complete enumeration of them is only possible for very small instances.



The proposed solution was to consider an iterative algorithm that adds the connectivity
constraints to the formulation as they are needed to progress the optimization. First,
the formulation is executed without these constraints and as soon as an integer solution
x∗ is obtained, the iterative algorithm is called. This method is often referred as “lazy
constraint”.

One of the advantages of our proposed formulation for the G-VRP, comparing to
other formulations for similar electric vehicle routing problems in literature, are: (i) the
ability to handle any number of visits on each AFSs; and (ii) allow solutions that have
any number of consecutive visits to AFSs, despites the fact the triangle inequalities are
valid for all instances, it is possible to visit two or more AFS consecutively in a route
(it might be necessary depending of to the energy required to visit other far customers).
For example, [Erdoğan and Miller-Hooks 2012] proposed a formulation where dummy
nodes are created for each possible visit to an AFS; [Erdoğan and Miller-Hooks 2012],
[Çağrı Koç and Karaoglan 2016], and [Leggieri and Haouari 2017] proposed formula-
tions that assume a vehicle never makes two consecutive visits in AFSs; and,
[Wang et al. 2018] proposed a formulation that assumed each AFS would be used at most
once per vehicle.

2. Preprocessing conditions

In this subsection preprocessing conditions are proposed to potentially allow fix-
ing some variables, and consequently, reduce the search space of the proposed
MILP model. Such conditions are based on the preprocessing conditions defined by
[Leggieri and Haouari 2017]. Let F0 = F ∪ {v0} and G[F0] = (F0, {(vr, vf ) ∈ E :
vf , vr ∈ F0 ∧ erf � β}). Let t�f be the shortest path time between v0 and vf in G[F0],
t
�
f including the refuel time of all AFSs visited by the shortest path. The preprocessing

conditions are (logical notation is used):

1. If erf > β ∨ trf > T , then xk
rf = xk

fr = 0 ∀vf , vr ∈ F0, ∀k ∈ M ;
2. If �vf ∈ F0 : t

�
f + tfi + si + ti0 � T ∧ efi + ei0 � β, then xk

0i = xk
i0 = 0

∀vi ∈ C, ∀k ∈ M ;
3. If �vf , vr ∈ F0 : t

�
f + tfi + si + tij + sj + tjr + t

�
r � T ∧ efi + eij + ejr � β, then

xk
ij = xk

ji = 0 ∀vi, vj ∈ C, ∀k ∈ M ;
4. If �vr ∈ F0 : t

�
r + tri + si + tif + sf + t

�
f � T ∧ eri + cif � β, then xk

if = xk
fi = 0

∀vi ∈ C, ∀vf ∈ F, ∀k ∈ M .

Note that the preprocessing conditions (2-4) are valid only because the edges costs
satisfy the triangle inequality.

2.1. Constraints to reduce the MILP model search space

This subsection contains valid inequalities to reduce the search space of the proposed
MILP formulation. The presented Lemmas and Theorems use the following notations.
Let:

• R be a feasible route;
• p(R) � 0 be the number of AFSs visited by the route R;
• q(R) � 1 be the number of customers visited by the route R;



• RF = (r1, r2, ..., rp(R)−1, rp(R)) be the sequence of AFSs visited by route R se-
quence;

• di be the amount of fuel spent between ri−1 and ri by R for 1 < i � p(R), d1
be the amount of fuel spent between v0 and r1, and dp(R)+1 be the amount of fuel
spent between rp(R) and v0;

• c(R) =
�p(R)+1

i=1 di the amount of fuel spent by R;
• λ = min{minvi∈V \{v0}{ei0},minvf ,vr∈F :vf �=vr{efr}} be the minimum energy re-

quired to visit two different AFS or to visit the nearest vertex starting from the
depot.

The inequalities are presented below.
Theorem 2.1.1. There exists an optimal solution in which route will use each edge at
most once, i.e., xk

ij ∈ B ∀vi, vj ∈ V, ∀k ∈ M .

Theorem 2.1.2. Let vf ∈ F be visited by route R. If R belongs to an optimal solution,
then vf will be visited at most q(R)+1 times by R, i.e.,

�
vj∈V xk
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�
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�
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ji+1

∀vf ∈ F, ∀k ∈ M .

Theorem 2.1.3. c(R) � (p(R) + 1)β, i.e.,
�
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Lemma 2.1.4. If a route R belongs to an optimal solution, then di + di+1 > β for 1 �
i � p(R).

Theorem 2.1.5. If a route R belongs to an optimal solution, and p(R) is odd, then c(R) >
(p(R) + 1)β

2
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2
∀k ∈ M , when p(R)

is odd.

Theorem 2.1.6. If a route R belongs to an optimal solution, and p(R) is even, then
c(R) > p(R)β

2
+ λ, i.e.,

�
vi∈V

�
vj∈V eijx

k
ij > (

�
vf∈F

�
vj∈V xk

fj)
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M, ∀vi, vj ∈ V : vi �= vj , when p(R) is even.

Theorem 2.1.7. If a route R belongs to an optimal solution, and p(R) is odd, then c(R) >
p(R)β

2
+ λ, i.e.,
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Theorem 2.1.8. If a route R belongs to an optimal solution, then c(R) > p(R)β
2
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