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Abstract. An odd coloring of a graph G is an assignment of colors to the edges
of G in a way that each vertex is incident to either zero or an odd number of
edges of each color. The minimum number of colors needed in such a coloring
is called the odd chromatic index of G, and it is denoted by χ′o(G). This notion
was introduced by Pyber, who showed that χ′o(G) ≤ 4 holds for every graph G.
In this paper, we show that almost every graph on an even (resp. odd) number
of vertices satisfies χ′o(G) = 2 (resp. χ′o(G) = 3).

1. Introduction

The word graph in this paper refers to a graph without loops or multiple edges (i.e.,
a simple graph). A graph G is called odd if all of its vertices have odd degree. An
odd coloring of a graph G is a collection of not necessarily spanning edge-disjoint odd
subgraphs of G that cover E(G). In other words, an odd coloring of G is a not necessarily
proper edge-coloring of G in which every vertex is incident to either zero or an odd
number of edges of each color, i.e., of the same element of the collection. The odd
chromatic index of G, denoted by χ′o(G), is the least number of subgraphs (equivalently,
of colors) in an odd coloring ofG. It is clear that χ′o(G) = 0 if and only ifG is empty; and
χ′o(G) = 1 if and only if G is an odd graph. The odd coloring problem was introduced by
Pyber (1991), who proved that χ′o(G) ≤ 4 for every graph (see Figure 1).

A natural problem is to characterize the families of graphs with given odd chro-
matic index. In 2018, Kano, Katona, and Varga presented a polynomial time algorithm to
decide whether a given multigraph has odd chromatic index 2. In 2006, Mátrai presented
an infinite family of connected graphsGwith odd chromatic index 4, but a complete char-
acterization of them seems to be difficult. We prove, on the other hand, that they are rare,
in a sense that we will make clear below.
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Figure 1. Examples of graphs with odd chromatic index equal to 1, 2, 3 and 4

The random graph G(n, p) is the graph on n vertices (or, to be precise, the proba-
bility distribution on the graphs on n labeled vertices) where each edge is included inde-
pendently and with probability p. In particular, G(n, 1/2) is the distribution that assigns
equal probability to each of the graphs on n vertices. The main result of this paper says
that if n is even (resp. odd), the proportion of graphs on n vertices and χ′o(G) = 2 (resp.
χ′o(G) = 3) among the graphs with n vertices tends to 1 when n tends to infinity.

Theorem 1. There is a constant C > 0 with the following property: if p = p(n) <

1 − 1/C and p > C
√

logn
n

, then, as n → ∞, we have P(χ′o(G(2n, p)) = 2) → 1 and
P(χ′o(G(2n + 1, p)) = 3)→ 1. In particular, by taking p = 1/2, almost all graphs G on
an even (resp. odd) number of vertices satisfy χ′o(G) = 2 (resp. χ′o(G) = 3).

This work is organized as follows. In Section 2, we present S-joins, which consti-
tute a fundamental tool in the study of odd colorings; in Section 3, we sketch the proof of
Theorem 1; and, in Section 4, we make some concluding remarks.

We thank the referees for their valuable comments and suggestions.

2. S-joins
Given a connected graph G and a subset S ⊆ V (G) with an even number of vertices, an
S-join is a subgraph H ⊆ G with the following property: for every v ∈ V (H), dH(v)
is odd if and only if v ∈ S. Such a subgraph can be constructed by taking an arbitrary
pairing of the vertices in S, taking (distinct) paths joining the vertices in each pair, and
adding an edge to H if and only if it is used in an odd number of the paths. Notice that
the removal of the edges of a cycle of H does not modify the parities of its vertices. Thus,
any minimal S-join is a forest.

Since the odd chromatic index of a graph is equal to the maximum of the odd
chromatic indices of its connected components, we assume, in what follows, that the
graphs we are dealing with are connected, even without stating it explicitly. Also, for a
graph G, we denote by Ge and Go the subgraphs of G induced by the vertices of even and
odd degrees, respectively. An Eulerian graph is a connected graph in which every vertex
has even degree, i.e., a connected graph G for which Ge = G.

We now present some known results on the odd chromatic index obtained by using
S-joins.

Proposition 1 (Pyber 1991). IfG is an Eulerian graph with |V (G)| even, then χ′o(G) = 2.
Proof. Let H be an S-join of G, with S = V (G). Note that both H and G\E(H) are odd
graphs. Therefore {H,G\E(H)} is an odd coloring of G. On the other hand, χ′o(G) > 1
since G is not odd itself.



Proposition 1 is tight in the sense that if G has an even number of vertices, but is
not Eulerian (resp. Eulerian, but has an odd number of vertices), then two colors may not
suffice: the graph obtained by joining two vertices by three internally disjoint paths, two
of length two and one of length three (resp. an odd cycle) has odd chromatic index 3.

Proposition 2 (Pyber 1991). If G is a graph such that |V (G)| is even, then χ′o(G) ≤ 3.

Proof. A forest can be odd colored with two colors (applying a greedy coloring in a
breadth-first ordering of the edges in each tree component). Now, let G be a graph on
an even number of vertices. In this case, |V (Ge)| is even. Let H be a minimal S-join of
G with S = V (Ge). Since H is a forest, we have χ′o(H) ≤ 2. Moreover, since H is a
V (Ge)-join, G \ E(H) is an odd graph. This concludes the proof.

3. The odd chromatic index of almost all graphs
Note that the proof of Proposition 1 uses the fact that a V (Ge)-join is an odd graph.
This property also holds if each connected component of Ge contains an even number of
vertices. Indeed, let S1, . . . , Sk be the components of Ge, and note that a V (Si)-join Ji
of Si is an odd subgraph of Si. Thus, G \

(⋃k
i=1E(Ji)

)
is also an odd graph. Therefore

χ′o(G) = 2 unless G is an odd graph. In particular, this implies that if a graph G has an
even number of vertices (so |V (Ge)| is even as well) andGe is connected, then χ′o(G) ≤ 2.

On the other hand, ifG has an odd number of vertices andGe andGo are connected
and Go is nonempty, we must have χ′o(G) ≥ 3. Indeed, if v is a vertex of odd degree,
then either one or three colors are used on the edges incident to v. Thus, if χ′o(G) ≤ 2,
then every vertex of odd degree has all the edges incident to it with the same color. This
implies, as Go is connected, that all the edges incident to V (Go) are colored with a single
color, say, 1. Thus, the graph spanned by the edges of color 2 is an odd spanning subgraph
of Ge. This is a contradiction, since |V (Ge)| is odd.

Theorem 1 is a consequence of Lemma 1, which says that for almost all graphs
G, the graphs Ge and Go are connected. Indeed, if |V (G)| is even, χ′o(G) = 2 follows
directly from the fact that Ge is connected. On the other hand, suppose that |V (G)| = n
is odd. Fix a vertex v in G. With probability that tends to 1 as n → ∞, v has a neighbor
u of even degree and χ′o(G− v) = 2. We extend a 2-coloring of G− v to a 3-coloring of
G in the following way: if d(v) is odd, color all the edges incident to v with a new color;
if d(v) is even, color all the edges incident to v but uv with a new color and color uv with
the color used in the coloring of G − v which does not appear in the edges incident to u
in this graph (such a color exists since dG−v(u) is odd). The result now follows from the
bound χ′o(G) ≥ 3 from the previous paragraph.

Lemma 1. There is a constant C > 0 with the following property: if p = p(n) < 1−1/C

and p > C
√

logn
n

, then P(G(n, p)e and G(n, p)o are connected graphs)→ 1 as n→∞.

Sketch of the proof. The idea of the proof is inspired by a lemma of Korándi, Krivelevich
and Sudakov [Korándi et al. 2015].

First, note that the probability that the Binomial variable Bin(m, p) is odd (resp.
even) is equal to 1−(1−2p)m

2
(resp. 1+(1−2p)m

2
). We use the following version of the Chernoff

bound (see, e.g., [Alon and Spencer 2004]): Let X1, . . . , Xn be independent Bernoulli



variables with P(Xi = 1) = pi. Let X =
∑n

i=1Xi and µ = E(X) =
∑n

i=1 pi. Then, for
any ε > 0, there is cε > 0 such that P(|X − µ| > εµ) ≤ 2e−cεµ.

In what follows, we prove the stronger statement that the probability that for every
u and v in V (G), there is a vertex of even degree xe and a vertex of odd degree xo adjacent
to u and v tends to 1. It is enough to prove the statement for even degree vertices, as
the proof for odd degrees vertices is similar. Consider two distinct vertices u and v in
V (G). We estimate the probability that all the common neighbors of u and v have odd
degree in the following way: we fix a set A ⊆ V (G) not containing u and v such that
|A| = n − bn2/3c and put B = V (G) − A − {u, v}. Let X be the random variable that
counts the number of vertices in A that are joined to both u and v and have even degree.
We generateG(n, p) in two steps: first, we expose the edges insideA andB. Conditioning
on any collection of edges spanned byA andB,X is the sum of |A| independent Bernoulli
variables (corresponding to each vertex of A) with parameter either p̄1 = p2 · 1+(1−2p)|B|

2

or p̄2 = p2 · 1−(1−2p)
|B|

2
. In any case, µ = E(X) ∼ np2/2. Applying the Chernoff bound

to the variable X with ε = 1, we get that P(|X − µ| > µ) ≤ 2e−cµ, for some c > 0.
Thus, P(X = 0) ≤ 2e−cµ. By the union bound, we have that the probability that some
pair of vertices in G(n, p) does not have an even degree common neighbor is at most(
n
2

)
2e−cµ < e2 logn−cµ → 0 if C > 2c−1/2.

4. Concluding remarks
We established the odd chromatic index of almost all graphs, and proved that it depends
only on the parity of the number of vertices of the graph. It might also be interesting to
prove a result similar to Theorem 1 for multigraphs, for which the odd chromatic index can
go up to 6 [Lužar et al. 2014, Petruševski 2018]. In another direction, we may consider
decompositions in graphs in which every vertex has degree 1 modulo k. In this case, the
best known upper bound to the modulo k chromatic index is 5k2 log k [Scott 1997].
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