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Abstract. An s-branching flow f in a network N = (D, c) (where c is the ca-
pacity function) is a flow that reaches every vertex in V (D) \ {s} from s while
loosing exactly one unit of flow in each vertex other than s. In other words, the
difference between the flow entering a vertex v and a flow leaving a vertex v is
one whenever v 6= s. It is known that the hardness of the problem of finding k
arc-disjoint s-branching flows in network N is linked to the capacity c of the
arcs in N : the problem is solvable in polynomial time if every arc has capacity
n − `, for fixed `, and NP-complete in most other cases, with very few cases
open. We further investigate a conjecture by [Costa et al. 2019] that aims to
characterize networks admitting k arc-disjoint s-branching flows, generalizing
a result that provides such characterization when all arcs have capacity n − 1,
based on Edmonds’ branching theorem. We show that, in general, the conjecture
is false. However, it holds for out-branchings with parallel arcs.

1. Introduction
A networkN is formed by a digraphD together with a capacity function c : A(D)→ Z+,
and a flow on N is a function f : A(D) → Z+ such that f(e) ≤ c(e) for all e ∈ A(D).
If e is an arc of D from a vertex u to a vertex v, we say that u and v are the endpoints
of e and, for v ∈ V (D), we denote by E−D(v) and E+

D(v) the set of arcs reaching and
leaving v in D, respectively. If all arcs in D have capacity λ, we simply write c ≡ λ. We
denote by f+(v) and f−(v) the amount of flow leaving and entering v, respectively. That
is, f+(v) =

∑
e∈E+

D(v) f(e) and f−(v) =
∑

e∈E−
D(v) f(e). Finally, we define the balance

of a vertex v with respect to f as f+(v)− f−(v) and denote it by bal(v).

In the classical (s, t)-Maximum Flow problem, the goal is to find a flow f maximi-
zing f−(t) on the input networkN = (D, c) such that bal(v) = 0 for all v ∈ V (D)\{s, t},
f−(s) = 0, and f+(t) = 0. A classical result by [Ford and Fulkerson 1956] shows that
this problem is solvable in polynomial time. In [Bang-Jensen and Bessy 2014] many types
of problems revolving around arc-disjoint flows are introduced and studied, generalizing
well-known and important problems and showing that, in some cases, a polynomial time
algorithm is possible. In this article, we consider one of such problems whose hardness is
intrinsically connected to the capacity function of the network.



An s-branching flow on a network N = (D, c) is a flow f such that bal(s) =
f+(s) = n − 1 and bal(v) = −1 for all v ∈ V (D) \ {s}. In other words, f reaches all
vertices in D, and each vertex other than s “consumes” one unit of flow.

For a digraph D and X ⊆ V (D), let d−D(X) be number of arcs from V (D) \ X
to X . We say that D is an out-branching with root s if there is path from s to every other
vertex in D and the underlying graph of D is a tree.

A classical result by [Edmonds 1973] shows that the problem of finding k arc-
disjoint out-branchings with root s is solvable in polynomial time. It was proved in [Bang-
Jensen and Bessy 2014] that this also yields a polynomial time algorithm for the problem
of finding k-arc disjoint s-branching flows in a given network N = (D, c) (henceforth
abbreviated (s, k)-DBF) whenever c ≡ n − 1, and that this problem is NP-complete if
every capacity at most 2, even if k = 2. The authors of [Bang-Jensen et al. 2016] extended
this latter result by showing that, for fixed integer `, (s, k)-DBF remains NP-complete if
c ≡ `, but it is solvable in polynomial time if c ≡ n − `. Furthermore, they showed that,
unless the Exponential Time Hypothesis (ETH - see [Impagliazzo et al. 2001]) fails, there
is no polynomial time algorithm for (s, k)-DBF when c ≡ λ for any choice of λ such that
n/2 ≤ λ ≤ n− (log n)1+ε. The same holds if (log n)1+ε ≤ λ ≤ n/2, as showed in [Costa
et al. 2019]. Figure 1 shows the currently known hardness results for (s, k)-DBF for
different choices of the capacity function.
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Figure 1. Complexity of (s, k)-DBF with regard to the capacity function.

The result in [Bang-Jensen and Bessy 2014] and [Edmonds 1973] gives a char-
acterization of positive instances of (s, k)-DBF when the capacity is not an issue: it is
shown that a network N = (D, c) with capacity c ≡ n − 1 admits k arc-disjoint s-
branching flows if and only if d−(X) ≥ k for all X ⊆ V (D) \ {s}. A generalization of
this condition was proposed by [Costa et al. 2019]. Namely, the authors conjectured that
a network N = (D, c) with c ≡ λ admits k arc-disjoint s-branching flows if and only if

d−D(X) ≥ k ·
⌈
|X|
λ

⌉
,∀X ⊆ V (D) \ {s}. (Property 1)

The authors showed that this condition is not only necessary for any choice of λ
but also sufficient for some particular choices of k and λ. It is also sufficient when D is a
multipath, that is, D is a path if we ignore parallel arcs. We give a counterexample for this
conjecture by showing a network whose digraph satisfies Property 1 without containing
k arc-disjoint s-branching flows. On the positive side, we show that the conjecture holds
for networks built on multi out-branchings; that is, D is an out-branching with root s with
(possibly) parallel arcs. Since a multipath is also a multi out-branching, this generalizes
the result of [Costa et al. 2019] mentioned above.



2. Arc-disjoint branching flows on networks satisfying Property 1
For a digraph D and X ⊆ V (D), D[X] denotes the subgraph of D induced by X . The
diameter of D is the size of the largest shortest directed path between two vertices in D.

Lemma 2.1. Let λ be a non-negative integer and D be a digraph such that Property 1
holds with respect to λ and some vertex s ∈ V (D). Let W ⊆ V (D) \ {s} be such that
only one vertex w ∈ W has in-neighbors in V (D) \W . Then Property 1 holds for D[W ]
with respect to λ and w.
Proof. By our choice of w, we have d−D[W ](v) = d−D(v), ∀v ∈ W \ {w}. Thus, for every
X ⊆ W \ {w} we have d−D[W ](X) = d−D(X) ≥ k · d|X|/λe and the result follows.

Theorem 2.2. Let N = (D, c) be the network where D is a multi out-branching with
root s and c ≡ λ. If Property 1 holds for D with respect to λ and s then N admits k
arc-disjoint s-branching flows.
Proof. We proceed by induction on the diameter h of D. If h = 1, then there are k arcs
from s to every other vertex in V (D) and the result follows. Assume now that the result
holds for multi out-branchings with diameter h−1, and let r1, . . . , rp be the out-neighbors
of s in D. Finally, for i ∈ {1, . . . , p}, let Di be the subgraph of D induced by the vertices
that can be reached from ri in D.

Now, by Lemma 2.1, Property 1 holds for each Di with respect to ri and λ. Fur-
thermore, since the diameter of each Di is at most h − 1, the network N i = (Di, c)
admits k arc-disjoint ri-branching flows f ′1, . . . , f

′
k. It remains to show how to extend

each flow f ′i to an s-branching flow in N . For i ∈ {1, . . . , p}, let qi = |V (Di)|/λ and
αi = |V (Di)| − bqic · λ. For every j ∈ {1, . . . , k}, start with fj(e) = f ′j(e) for every
e ∈ A(D) not containing s as an endpoint.

Now, for every i ∈ {1, . . . , p}, partition the set of arcs from s to ri into sets
Ei

1, . . . , E
i
k of size dqie. Since Property 1 holds for D with respect to λ and s, we know

that such partition is possible. Finally, add to the arcs used by each fj exactly bqic arcs
fromEi

j with λ flow units each and one arc from the same set with αi flow units, if αi > 0.
Thus each fj sends from s to ri exactly |V (Di)| flow units and the result follows.

Figure 2 shows a counterexample for the conjecture in [Costa et al. 2019].
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Figure 2. Counterexample for λ = 2 and k = 2.

Theorem 2.3. LetD be the digraph shown in Figure 2 andN = (D, c) be a network with
c ≡ 2. Then Property 1 holds for D with respect to λ = 2, s, and k = 2 and there are no
2 arc-disjoint s-branching flows in N .



Proof. We say that a set X ⊆ V (D) is feasible if d−D(X) ≥ 2 · d|X|/2e and denote by
e(s,X) the number of arcs from s to the vertices in X . First, we show that every X ⊆
V (D) \ {s} is feasible. Since V (D) \ {s} is feasible, we assume that X ( V (D) \ {s}.
We consider three cases.

If v6 6∈ X , then e(s,X) ≥ |X| which in turn implies that d−D(X) ≥ |X|+ 1 since
d+D(V (D) \ (X ∪ {s})) ≥ 1 for all X ( V (D) \ {s}, and thus X is feasible. Similarly,
if v6 ∈ X and v5 ∈ X , we get that d−D(X) ≥ |X| + 1 since there are two arcs from s to
v5 and thus X is feasible. Finally, if v6 ∈ X and v5 6∈ X , then d−D(X) ≥ e(s,X) + 2 ≥
|X| − 1 + 2 = |X| + 1 as there are two arcs from v5 to v6 in D. Thus we conclude that
every X ⊆ V (D) \ {s} is feasible.

Assume the contrary, i.e., that there are two arc-disjoint s-branching flows f1 and
f2 in N . Since there are only two arcs entering v1 in D, one of them must be used by f1
and the other by f2, and the same holds for v2 and v3. Assume, without loss of generality,
that the arc e from v6 to v1 is used by f1 and that the arc e′ from s to v1 is used by f2. If
f1(e) = 1 then either f−1 (v2) = 0 or f−2 (v3) = 0, a contradiction since both flows must
reach all vertices in V (D) \ {s}. Thus, we know that f1(e) = 2 which in turn implies that
f−1 (v6) = f+

1 (v6)+1 = 3. Since each arc has capacity 2, we conclude that both arcs from
v5 to v6 must be used by f1 and thus f−2 (v6) = 0, contradicting our choice for f2.

We observe that from the graph of Figure 2, a counterexample can be built for any
even k and λ ≥ 2. Although we have shown that Property 1 is not by itself sufficient
for a network to have k arc-disjoint branching flows. We believe that combining it with
some condition that take into account single vertices demands in the set X will lead to the
sufficiency of the conjecture.
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