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Abstract. An s-branching flow f in a network N = (D, c¢) (where c is the ca-
pacity function) is a flow that reaches every vertex in V(D) \ {s} from s while
loosing exactly one unit of flow in each vertex other than s. In other words, the
difference between the flow entering a vertex v and a flow leaving a vertex v is
one whenever v # s. It is known that the hardness of the problem of finding k
arc-disjoint s-branching flows in network N is linked to the capacity c of the
arcs in N': the problem is solvable in polynomial time if every arc has capacity
n — £, for fixed ¢, and NP-complete in most other cases, with very few cases
open. We further investigate a conjecture by [Costa et al. 2019] that aims to
characterize networks admitting k arc-disjoint s-branching flows, generalizing
a result that provides such characterization when all arcs have capacity n — 1,
based on Edmonds’ branching theorem. We show that, in general, the conjecture
is false. However, it holds for out-branchings with parallel arcs.

1. Introduction

A network N is formed by a digraph D together with a capacity function ¢ : A(D) — 7.,
and a flow on N is a function f : A(D) — 7 such that f(e) < ¢(e) forall e € A(D).
If e is an arc of D from a vertex w to a vertex v, we say that v and v are the endpoints
of e and, for v € V(D), we denote by E,(v) and E}(v) the set of arcs reaching and
leaving v in D, respectively. If all arcs in D have capacity A\, we simply write ¢ = \. We
denote by f*(v) and f~ (v) the amount of flow leaving and entering v, respectively. That
is, f[T(v) = YXeeppw f(e) and [~ (v) = 3 cp—(,) f(e). Finally, we define the balance
of a vertex v with respect to f as f*(v) — f~(v) and denote it by bal(v).

In the classical (s, t)-Maximum Flow problem, the goal is to find a flow f maximi-
zing f~(t) on the input network N' = (D, ¢) such that bal(v) = O forallv € V(D)\{s,t},
f~(s) =0,and fT(t) = 0. A classical result by [Ford and Fulkerson 1956] shows that
this problem is solvable in polynomial time. In [Bang-Jensen and Bessy 2014] many types
of problems revolving around arc-disjoint flows are introduced and studied, generalizing
well-known and important problems and showing that, in some cases, a polynomial time
algorithm is possible. In this article, we consider one of such problems whose hardness is
intrinsically connected to the capacity function of the network.



An s-branching flow on a network N' = (D, ¢) is a flow f such that bal(s) =
ft(s) =n —1andbal(v) = —1forall v € V(D) \ {s}. In other words, f reaches all
vertices in D, and each vertex other than s “consumes” one unit of flow.

For a digraph D and X C V(D), let d;,(X) be number of arcs from V(D) \ X
to X. We say that D is an out-branching with root s if there is path from s to every other
vertex in D and the underlying graph of D is a tree.

A classical result by [Edmonds 1973] shows that the problem of finding % arc-
disjoint out-branchings with root s is solvable in polynomial time. It was proved in [Bang-
Jensen and Bessy 2014] that this also yields a polynomial time algorithm for the problem
of finding k-arc disjoint s-branching flows in a given network A’ = (D, ¢) (henceforth
abbreviated (s, k)-DBF) whenever ¢ = n — 1, and that this problem is NP-complete if
every capacity at most 2, even if £ = 2. The authors of [Bang-Jensen et al. 2016] extended
this latter result by showing that, for fixed integer ¢, (s, k)-DBF remains NP-complete if
¢ = /, but it is solvable in polynomial time if ¢ = n — ¢. Furthermore, they showed that,
unless the Exponential Time Hypothesis (ETH - see [Impagliazzo et al. 2001]) fails, there
is no polynomial time algorithm for (s, k)-DBF when ¢ = A for any choice of A such that
n/2 < X < n—(logn)'*™=. The same holds if (logn)'*t* < X\ < n/2, as showed in [Costa
et al. 2019]. Figure 1 shows the currently known hardness results for (s, k)-DBF for
different choices of the capacity function.

2 ¢ (logn)t*e n/2 n—(logn)**  n—¢ n-1
e L : : v —_
No polynomial time algorithm .
NP-complete  ? (unless ETH fails) ? Poly-time

Figure 1. Complexity of (s, k)-DBF with regard to the capacity function.

The result in [Bang-Jensen and Bessy 2014] and [Edmonds 1973] gives a char-
acterization of positive instances of (s, k)-DBF when the capacity is not an issue: it is
shown that a network N/ = (D, ¢) with capacity ¢ = n — 1 admits k arc-disjoint s-
branching flows if and only if d~(X) > k forall X C V(D) \ {s}. A generalization of
this condition was proposed by [Costa et al. 2019]. Namely, the authors conjectured that
anetwork N' = (D, ¢) with ¢ = \ admits & arc-disjoint s-branching flows if and only if

dp(X) > k- [@—‘ VX CV(D)\ {s}. (Property 1)

The authors showed that this condition is not only necessary for any choice of A
but also sufficient for some particular choices of £ and A. It is also sufficient when D is a
multipath, that is, D is a path if we ignore parallel arcs. We give a counterexample for this
conjecture by showing a network whose digraph satisfies Property 1 without containing
k arc-disjoint s-branching flows. On the positive side, we show that the conjecture holds
for networks built on multi out-branchings; that is, D is an out-branching with root s with
(possibly) parallel arcs. Since a multipath is also a multi out-branching, this generalizes
the result of [Costa et al. 2019] mentioned above.



2. Arc-disjoint branching flows on networks satisfying Property 1

For a digraph D and X C V(D), D[X] denotes the subgraph of D induced by X. The
diameter of D is the size of the largest shortest directed path between two vertices in D.

Lemma 2.1. Let \ be a non-negative integer and D be a digraph such that Property 1
holds with respect to A and some vertex s € V(D). Let W C V(D) \ {s} be such that
only one vertex w € W has in-neighbors in V(D) \ W. Then Property 1 holds for D[W]
with respect to A and w.

Proof. By our choice of w, we have dj,;, (v) = dpp(v), Vv € W\ {w}. Thus, for every
X C W\ {w} we have dp, (X) = dp(X) = k- [|X[/A] and the result follows. [

Theorem 2.2. Let N' = (D, c) be the network where D is a multi out-branching with
root s and ¢ = M. If Property 1 holds for D with respect to \ and s then N admits k
arc-disjoint s-branching flows.

Proof. 'We proceed by induction on the diameter i of D. If h = 1, then there are k arcs
from s to every other vertex in V(D) and the result follows. Assume now that the result
holds for multi out-branchings with diameter 2 —1, and let r, . . ., r, be the out-neighbors
of sin D. Finally, fori € {1,...,p}, let D; be the subgraph of D induced by the vertices
that can be reached from r; in D.

Now, by Lemma 2.1, Property 1 holds for each D; with respect to r; and \. Fur-
thermore, since the diameter of each D; is at most h — 1, the network A; = (D;,¢)
admits k arc-disjoint r;-branching flows fi,..., f;. It remains to show how to extend
each flow f] to an s-branching flow in N. Fori € {1,...,p}, let ¢; = |V(D;)|/\ and
a; = |V(D;)| — [gi] - A\ Forevery j € {1,...,k}, start with f;(e) = fi(e) for every
e € A(D) not containing s as an endpoint.

Now, for every i € {1,...,p}, partition the set of arcs from s to r; into sets
Ei, ..., E} of size [g;]. Since Property 1 holds for D with respect to A and s, we know
that such partition is possible. Finally, add to the arcs used by each f; exactly |¢;] arcs
from E]Z with \ flow units each and one arc from the same set with «; flow units, if o;; > 0.
Thus each f; sends from s to r; exactly |V (D;)| flow units and the result follows. O

Figure 2 shows a counterexample for the conjecture in [Costa et al. 2019].
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Figure 2. Counterexample for A = 2 and k = 2.

Theorem 2.3. Let D be the digraph shown in Figure 2 and N = (D, ¢) be a network with
¢ = 2. Then Property 1 holds for D with respect to A = 2, s, and k = 2 and there are no
2 arc-disjoint s-branching flows in N.



Proof. We say that a set X C V(D) is feasible if d,(X) > 2 - [|X|/2] and denote by
e(s, X)) the number of arcs from s to the vertices in X. First, we show that every X C
V(D) \ {s} is feasible. Since V(D) \ {s} is feasible, we assume that X C V(D) \ {s}.
We consider three cases.

If vg ¢ X, then e(s, X') > | X| which in turn implies that d,(X) > | X| + 1 since
dE(V(D)\ (X U{s})) > 1forall X C V(D) \ {s}, and thus X is feasible. Similarly,
if g € X and v5 € X, we get that d,(X) > | X| + 1 since there are two arcs from s to
vs and thus X is feasible. Finally, if vg € X and v5 € X, then d,(X) > e(s, X) +2 >
|X| —1+2 = |X]|+ 1 as there are two arcs from v5 to vs in D. Thus we conclude that
every X C V(D) \ {s} is feasible.

Assume the contrary, i.e., that there are two arc-disjoint s-branching flows f; and
fo in V. Since there are only two arcs entering vy in D, one of them must be used by f;
and the other by f5, and the same holds for v, and v3. Assume, without loss of generality,
that the arc e from vg to v; is used by f; and that the arc ¢’ from s to v, is used by fo. If
fi(e) = 1 then either f; (v2) = 0 or f; (v3) = 0, a contradiction since both flows must
reach all vertices in V(D) \ {s}. Thus, we know that f;(e) = 2 which in turn implies that
f1 (vg) = fif (vs) +1 = 3. Since each arc has capacity 2, we conclude that both arcs from
v5 to vg must be used by f; and thus f; (vs) = 0, contradicting our choice for f. O

We observe that from the graph of Figure 2, a counterexample can be built for any
even k and A > 2. Although we have shown that Property 1 is not by itself sufficient
for a network to have k arc-disjoint branching flows. We believe that combining it with
some condition that take into account single vertices demands in the set X will lead to the
sufficiency of the conjecture.
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