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Abstract. In this work we determine that all members of an infinite family of
4-regular circulant graphs are Type 1.

Resumo. Neste trabalho, nós provamos que todos os membros de uma famı́lia
infinita de grafos circulantes 4-regulares são Tipo 1.

1. Introduction
Total colorings combine the vertex and edge colorings by coloring both vertices and edges
of a graphG so that adjacent elements (vertices and edges) have different colors. A k-total
coloring of a graph G is an assignment of k colors to the elements of G such that adjacent
elements have different colors. The total chromatic number χ′′(G) is the smallest integer
k for which G has a k-total coloring. Clearly, χ′′(G) ≥ ∆ + 1, and the Total Coloring
Conjecture (TCC) states that for any simple graph G, χ′′(G) ≤ ∆ + 2, where ∆ is the
maximum degree of G [Behzad 1965, Vizing 1968]. Graphs with χ′′(G) = ∆(G) + 1 are
said to be Type 1, and graphs with χ′′(G) = ∆(G) + 2 are said to be Type 2. The TCC
has been verified for several classes of graphs.

A circulant graph Cn(d1, d2, · · · , dl) with 1 ≤ d1 < · · · < dl ≤ bn2 c has vertex
set V = {v0, v1, · · · , vn−1} and edge set E =

⋃l
i=1Ei where Ei = {ei0, ei1, · · · , ein−1}

and eij = (vj, vj+di) where the indices of the vertices are considered modulo n.
An edge of Ei is called edge of length di. Examples of circulant graphs include
the cycle graphs Cn ' Cn(1) and the complete graphs Kn ' Cn(1, 2, · · · , bn

2
c),

and their total chromatic number are well known [Yap 1996]. Furthermore, the to-
tal chromatic number of the cubic circulant graphs (which are of the form C2n(d, n))
was determined in 2004 [Hackmann and Kemnitz 2004]. The well known Möbius
Ladder graphs are the cubic circulant graphs C2n(1, n), and they are known to be
Type 2 [Chetwynd and Hilton 1988]. In 2008, it was proved that every 4-regular circulant
graph, for any positive integer p, C5p(1, k) is Type 1 for k < 5p/2 with k ≡ 2 mod 5
or k ≡ 3 mod 5; and C6p(1, k) is Type 1 for p ≥ 3 and k < 3p with k ≡ 1 mod 3 or
k ≡ 2 mod 3 [Khennoufa and Togni 2008].

Another infinite family of circulant graphs which have been extensively studied
in the literature is the power of cycles, denoted by Ck

n, and consisting of a cycle Cn with
additional edges between any pair of vertices of distance at most k. It was conjectured
that Ck

n, with 2 ≤ k ≤ bn/2c, is Type 2 if and only if n is odd and k < n/3 − 1
[Campos 2006]. This implies that for each k ≥ 2, there is a finite number of Type 2
graphs. This conjecture has been proved when k = 2 and in the same work, she proved
that the TCC holds for n even and for C3

n and C4
n [Campos 2006]. Recently Campos’

conjecture has been proved for C3
n and C4

n [Zorzi 2019].

In this work, we determine the total chromatic number of another family of cir-
culant graphs. The technique uses total colorings of the well known Ladder graphs, also



named as Prism graphs G(n, 1). For these graphs it was proved that they are all Type 1,
except for G(5, 1) which is Type 2 [Chetwynd and Hilton 1988].

2. Preliminaries
A semigraph is a triple B = (V,E, S) where V is the set of vertices of B, E is a set of
edges having two distinct endpoints in V , and S is a set of semiedges having one endpoint
in V . We denote an edge having endpoints v andw by vw and a semiedge having endpoint
v as v·. When vertex v is an endpoint of e ∈ E ∪ S we say that e is incident to v. Two
elements of E ∪ S incident to the same vertex, or two vertices incident to the same edge,
are called adjacent. In this work, we are mainly interested in graphs and semigraphs such
that there are exactly four elements (edges and/or semiedges) incident to every vertex.
These are called 4-regular graphs and 4-regular semigraphs, respectively. Notice that a
k-total coloring of a semigraph B is an assignment of k colors to the edges, semiedges
and vertices of B such that adjacent elements have different colors.

Every 4-regular circulant graph is denoted by Cn(a, b), with 1 ≤ a < b < n/2.
We investigate the circulant graphs that are a subclass of the class of graphs Cn(a, b),
with a mutiple by n or b multiple by n. All graphs of this class have the Ladder graphs
G(n

a
, 1) (or G(n

b
, 1)) as a subgraph (see Figure 1). We use appropriate total colorings pre-

viously obtained for this class [Chetwynd and Hilton 1988] to construct 5-total colorings
of Theorem 1.

Figure 1. The 4-regular circulant graphs C8(2, 3) and C10(2, 3) with the Ladder
graphs G(4, 1) and G(5, 1) as subgraphs, respectively.

3. An infinite family of Type 1 circulant graphs
The main result of this work is presented below.

Theorem 1. LetCn(2k, 3) be a 4-regular connected circulant graph. The graphCn(2k, 3)
is Type 1 for n = (8µ+ 6λ)k, with k ≥ 1 and non-negative integers µ and λ.

Sketch of proof. Since the considered circulant graph on 2n vertices consists of the Lad-
der graph on 2n vertices as a sugraph plus a set of independent edges, by using an optimal
total coloring of the Ladder graph and one new color for the independent set of edges, we
obtain the desired total coloring. The technique applied to obtain the total colorings is to
construct the circulant graphs by making operations between semigraphs with compatible
total colorings. Consider the semigraph B(n, a) with a multiple by n, set n = a · k as
follows.



• The vertices of B(n, a) are:

V =
a−1⋃
i=0

Vi, with Vi = {vk·i+j | 0 ≤ j < k}.

• The edges of B(n, a) are:

E =

(
a−1⋃
i=0

EC
i

)
∪
(

a−2⋃
i=0

ER
i

)
, with EC

i = {vk·i+j−1vk·i+j | 1 ≤ j < k} e ER
i =

{vi·k+jv(i+1)·k+j | 0 ≤ j < k}.
• The semiedges of B(n, a) are partitioned into two classes, called vertical

semiedges and horizontal semiedges:
(i) Vertical semiedges: {vi· | 0 ≤ i < k} ∪ {v(a−1)·k+i· | 0 ≤ i < k}, where the sets

are called top semiedges and bottom semiedges, respectively, and for 0 ≤ i < k,
vi· is the i-th top semiedge and v(a−1)·k+i· is the i-th bottom semiedge.

(ii) Horizontal semiedges: {vi·k· | 0 ≤ i < a} ∪ {v(i+1)·k−1· | 0 ≤ i < a}, where the
sets are called left semiedges and right semiedges, respectively.

In the following, we present additional definitions and operations that will be used
in the construction of total colorings. Given two semiedges x· and y·, the junction of x·
with y·means replacing x· and y· by an edge xy. The vertical merge betweenB(n, a) and
B(n, b) is the semigraphB(n+m, a+b) obtained by the junction of the bottom semiedges
ofB(n, a) with the top semiedges ofB(m, b), that is, the junction of v(a−1)·k+i· ofB(n, a)
with vi· of B(m, b), for 0 ≤ i < k. The horizontal merge between B(n, a) and B(m, a)
is the semigraph B(n+m, a) obtained by junction of the right semiedges of B(n, a) with
the left semiedges of B(m, a), that is, the junction of vi·k· of B(n, a) with v(i+1)·k−1· of
B(m, a), for 0 ≤ i < a. Finally, the p-closure of B(n, a) is the graph obtained by the
junction of the following semiedges: (i) the left semiedges with the right semiedges, that
is, for each 0 ≤ i < a, the junction of vi·k+1·with v(i+1)·k·; and (ii) the top semiedges with
the bottom semiedges, that is, the junction of each i-th top semiedge with the (i − p)-th
bottom semiedge (the positions are taken modulo k).

We construct 5-total colorings of the investigated class of graphs by using 5-total
colorings of appropriate copies of semigraphs B(6, 2k) and B(8, 2k). For each k ≥ 1, by
merging semigraphs B(8, 2k) with semigraphs B(6, 2k) (or with copies of the same one)
with 5-total colorings and making the closure of the resulting semigraph in a way that the
colorings do not conflict in the process, we construct all circulant graphs of Theorem 1
with a 5-total coloring. Figure 2 presents a 5-total coloring of C8(2, 3) and the semigraph
B(8, 2) with a 5-total coloring. By making the 3-closure of this semigraph, we obtain the
graph C8(2, 3).

Figure 2. Graph C8(2, 3) with a 5-total coloring by using the semigraph B(8, 2).



Another example is presented in the following. By merging semigraphs B(8, 2)
and B(6, 2) and by making the 3-closure of the resulting semigraph with a 5-total color-
ing, we obtain the graph C14(2, 3) with a 5-total coloring, presented in Figure 3.

Figure 3. A 5-total coloring of graph C14(2, 3) and the horizontal merging between
semigraphs B(8, 2) and B(6, 2).

It is well known that G(5, 1) is Type 2 [Chetwynd and Hilton 1988] and we could
not determine the Type of C10(2, 3). So, from Theorem 1 for k = 1, n ≥ 6 and n 6= 10,
we conclude this work with the following consequence.

Corollary 1. The circulant graphs Cn(2, 3), for even n ≥ 6 and n 6= 10, are Type 1.
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