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Abstract. Given a digraph D, a coloring C of D is a partition of V (D) into
stable sets. The k-norm of C is defined as

∑
C∈Cmin{|C|, k}. A coloring of

D with minimum k-norm has its k-norm noted by χk(D). A (path)-k-pack of a
digraph D is a set of k vertex-disjoint (directed) paths of D. The weight of a
k-pack is the number of vertices covered by the k-pack. We denote by λk(D) the
weight of a maximum k-pack. Linial conjectured that χk(D) ≤ λk(D) for every
digraph. Such conjecture remains open, but has been proved for some classes of
digraphs. We prove the conjecture for path-spine digraphs, defined as follows.
A digraph D is path-spine if there exists a partition {X, Y } of V (D) such that
D[X] has a Hamilton path and every arc in D[Y ] belongs to a single path Q.

1. Introduction
In this paper we consider directed graphs without loops or parallel edges. For a digraph
D, we denote by V (D) its set of vertices and by A(D) its set of arcs. Given an arc
a = (u, v) ∈ A(D), we say that u and v are adjacent and also that u dominates v and v is
dominated by u.

A (directed) path of a digraph D is a sequence P = (v1, v2, . . . , v`) of distinct
vertices such that arc (vi, vi+1) ∈ A(D), for every 1 ≤ i < `. We denote by V (P ) the set
of vertices of P and abuse notation denoting by |P | the cardinality of V (P ). We denote
by λ(D) the maximum order of a path in D. Given a positive integer k, a collection of
k vertex-disjoint paths Pk = {P1, P2, . . . , Pk} is called a (path) k-pack of D. A stable
set of a digraph D is a subset of pairwise non-adjacent vertices of V (D). We denote by
α(D) the cardinality of the maximum stable set in D. A coloring C of a digraph D is a
partition of V (D) into stable sets; each stable set is a color class of C. We denote by |C|
the number of stable sets in the coloring. We say that a coloring C of D is optimal if it
has minimum cardinality (the least possible number of color classes) and we denote its
cardinality by χ(D).

Gallai and Roy were the first ones to find a relationship between coloring and
(path) k-packs. In two independent papers [Gallai 1968] and [Roy 1967] showed that
χ(D) ≤ λ(D) for every digraph D; this is known as Gallai-Roy’s Theorem. Later,
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in [Mirsky 1971] it was shown that χ(D) = λ(D) for every transitive acyclic digraph;
this is known as Mirsky’s Theorem.

Further attempts to generalize such results were made. New metrics of maxi-
mality and minimality were defined with respect to a positive integer k for k-packs and
for colorings. The weight of a k-pack Pk = {P1, P2, . . . , Pk}, denoted by ||Pk||, is
given by

∑
Pi∈Pk

|Pi|. A k-pack is optimal if its weight is maximum and the weight of
an optimal k-pack is denoted by λk(D). The k-norm of a coloring C of D is defined
as

∑
C∈Cmin{|C|, k} and denoted by |C|k. A coloring of D with minimum k-norm is

called k-optimal and we denote its k-norm by χk(D). Note that λ(D) = λ1(D) and
χ(D) = χ1(D). In [Greene 1976], a generalization of Mirsky’s Theorem was given by
showing that χk(D) = λk(D) for every transitive acyclic digraph D and every positive
integer k; this is known as Greene’s Theorem. Along the same line, Linial proposed a
conjecture that sought to generalize Gallai-Roy’s Theorem. It is stated below.

Conjecture 1 (Linial’s Dual Conjecture [Linial 1981]). For every digraph D and every
positive integer k, we have χk(D) ≤ λk(D).

Linial’s Dual Conjecture is the main focus of this paper. This conjecture re-
mains open, but has partial results. Recent contributions include [Sambinelli et al. 2017a,
Sambinelli et al. 2019]. Other recent contributions on a related – but different – Con-
jecture of Linial include [Sambinelli et al. 2017b, Yoshimura et al. 2019], papers that
present techniques that were important inspirations for this work. A thorough summary
on the state of the art of both conjectures can be found in [Sambinelli 2018, Table 6.1].
In order to define the class of digraphs of interest in this paper, we need the follow-
ing additional concepts. A Hamilton path is a path containing every vertex in V (D).
Digraph D is traceable if it contains a Hamilton path. A tournament is a digraph D
for which every pair of vertices u and v are adjacent. We do know, by Rédei’s Theo-
rem (see [Bondy and Murty 2008]), that every tournament is traceable. We denote by
D[X, Y ] a digraph with a partition {X, Y } of V (D). Depending on the structure of the
subdigraphs D[X] and D[Y ] induced by each part we may define several classes of di-
graphs. A digraph D[X, Y ] is split if D[X] is a tournament and D[Y ] is a stable set.
Consider a digraph D[X, Y ] such that D[X] is traceable; then, D is spine if D[Y ] is a
stable set, arc-spine if D[Y ] contains at most one arc and path-spine if D[Y ] contains
at most one nontrivial path Q (if any). Clearly, path-spine digraphs are a superclass of
arc-spine digraphs which, in turn, are a superclass of spine digraphs. Also, by Rédei’s
Theorem, spine digraphs are a superclass of split digraphs.

Here we prove Linial’s Dual Conjecture for path-spine digraphs. One important
partial result for this conjecture is due to Hartman, Saleh and Hershkowits, who proved
in [Hartman et al. 1994] that it holds for split digraphs (such proof can be easily adapted
for spine digraphs). Therefore, our result is, as far as we know, the first generalization of
Hartman, Saleh and Hershkowits’s proof for split digraphs since its publication in 1994.

2. Path-spine digraphs and Linial’s Dual Conjecture

To prove the validity of Linial’s Dual Conjecture we find an upper bound for χk(D) and
a lower bound for λk(D) aiming at minimizing the gap between these two values. To do
so, we will define standard ways to obtain both a coloring and a k-pack for a digraph D.
We will assume, without loss of generality, that the partition {X, Y } considered makes X



maximal. Let P be the Hamilton path in D[X] and let Q = (y1, y2, . . . , yd) be the single
path in D[Y ] with d vertices. A canonical k-pack for a path-spine digraph D is defined
as Pk = {P} ∪ {Q} ∪ {(y) : y ∈ S}, where S is some arbitrary set of k − 2 vertices in
Y ′ = Y − V (Q). The weight of a canonical k-pack is therefore

||Pk|| = |X|+min{|Y | − (d− 2), k}+ (d− 2).

Now, the definition of the standard coloring differ slightly depending on whether d ≥ 3
or not. When d ≥ 3, a canonical coloring for a path-spine digraph D is defined as
C = {C1} ∪ {{v} : v ∈ V (D) − C1}, where the unique non-trivial color class C1 is
defined as C1 = Y ′ ∪ {y1, yd}. The k-norm of such coloring is:

|C|k = min{|Y ′ ∪ {y1, yd}|, k}+ |X|+ (d− 2).

Note that |Y ′ ∪ {y1, yd}| = |Y | − (d − 2), so ||Pk|| and |C|k coincide no matter what is
the value of min{|Y | − (d− 2), k}. Therefore the conjecture trivially holds when d ≥ 3.
It thus suffices to prove the conjecture for the case d = 2 since it is known to be valid
for d = 1. In such case, D[Y ] is a stable set and D is in fact a spine digraph; Hartman,
Saleh and Hershkowits’ proof for split digraphs can be easily adapted to spine digraphs as
mentioned before. We may thus assume that d = 2, i. e., D is an arc-spine digraph and the
ends of Q are adjacent. To simplify notation, we will denote y1 by u and y2 = yd by v in
this case. The definition of a canonical coloring for an arc-spine digraph differs from that
of a path-spine solely on the non-trivial color class C1, which is defined as C1 = Y ′∪{u}.
The k-norm of such coloring is thus:

|C|k = min{|Y ′ ∪ {u}|, k}+ |X|+ 1.

When, k ≥ |Y |, we have |C|k = ||Pk|| = |X| + |Y | and the conjecture trivially holds.
Therefore, we may henceforth assume that k < |Y |. Clearly, |C|k − 1 = ||Pk||; thus
the gap between the bounds obtained for χk and λk is 1. As Y − {v} is always a stable
set, α(D) ≥ |Y | − 1. When α(D) > |Y | − 1 we may define a coloring with a unique
non-trivial color class composed by a maximum stable set. Such coloring would have
k-norm smaller than |C|k − 1, thus settling the conjecture. We may thus assume that
α(D) = |Y | − 1 and it suffices to prove Theorem 1 to conclude the proof. The proof of
this theorem relies on some lemmas, whose proofs are omitted due to space constraint.
Before stating the lemmas, we need to define some rather technical concepts.

We say that a vertex x ∈ X is uv-triangulated when x is adjacent to both u and v.
We say that D has an obstruction when for every x ∈ X we have that: (a) x is adjacent
to some y ∈ Y ′; or (b) condition (a) is false and x is uv-triangulated. A t-subset of an
arc-spine digraph D[X, Y ] is a subset T of Y that has t vertices and D[X,T ] has a path
partition into t − 1 paths. Let P = (x1, x2, . . . , x`) be a Hamilton path of D[X]. We say
that two vertices xi and xj in X with i < j in P are the ends of a knot if the following
three conditions are satisfied: (i) xi dominates some yi in Y ′; (ii) xj is dominated by some
yj in Y ′; and (iii) xi+1, ..., xj−1 are uv-triangulated.
Lemma 1. If D[X, Y ] is an arc-spine digraph and k = 2, then χk(D) ≤ λk(D).
Lemma 2. Given two paths P and Q such that every vertex p ∈ P is adjacent to every
vertex q ∈ Q, then there is a path R such that V (R) = V (P ) ∪ V (Q).
Lemma 3. If D[X, Y ] is an arc-spine digraph such that α(D) = |Y | − 1, then D has an
obstruction.



Lemma 4. If D[X, Y ] is an arc-spine digraph and T ⊂ Y is a t-subset of D such that
k ≥ t− 1, then χk(D) ≤ λk(D).
Lemma 5. LetD[X, Y ] be an arc-spine digraph and let P = (x1, x2, . . . , x`) be a Hamil-
ton path of D[X]. If there is a pair xi and xj that are ends of a knot, then {u, v, yi, yj} is
a 4-subset of D, where yi is some vertex in Y ′ dominated by xi and yj is some vertex in
Y ′ that dominates xj .
Theorem 1. If D[X, Y ] is an arc-spine digraph such that α(D) = |Y | − 1 and k < |Y |,
then χk(D) ≤ λk(D).

Proof. We assume that k ≥ 3, by Lemma 1. By Lemma 3, D has an obstruction. Let
P = (x1, x2, . . . , x`) be a Hamilton path of D[X]. By Lemmas 4 and 5 if there are two
vertices of P that are ends of a knot inD, then χk(D) ≤ λk(D). We thus assume this does
not happen. If every vertex of X is uv-triangulated, by Lemma 2, there is one path with
all vertices in X ∪ {u, v}, thus making {u, v} a 2-subset. By Lemma 4 the conjecture
holds in this case. So, some vertex xi ∈ X is not uv-triangulated and we assume i is
the smallest possible, without loss of generality. As D has an obstruction, there is a
vertex yi ∈ Y ′ adjacent to xi. If yi dominates xi then, by the maximality of X , we may
assume i > 1. Therefore, {u, v, yi} is a 3-subset of D. Path P1 = (yi, xi, xi+1, . . . , x`)
contains yi and Lemma 2 ensures the existence of a path P2 containing the vertices in
(x1, . . . , xi−1) as well as u and v. Lemma 4 implies that the conjecture holds in this case.
We may thus assume that yi is dominated by xi. Let j be the largest value so that xj is
not uv-triangulated and xj dominates a vertex yj ∈ Y ′. Clearly, j ≥ i. We may assume
j < ` by the maximality of X . By symmetry, we may also assume that some vertex of
(xj+1, . . . , x`) is not uv-triangulated, otherwise {u, v, yj} would be a 3-subset of D. Now
let h be the smallest value so that j + 1 ≤ h ≤ ` and xh is not uv-triangulated. Since D
has an obstruction, there must be a vertex yh ∈ Y ′ adjacent to xh. By the choice of j, xj
is dominated by yh. But then, xj and xh are ends of a knot in D; a contradiction.
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