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1Departamento de Matemática, Universidade Federal Rural de Pernambuco

2Microsoft Redmond, USA
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Abstract. We address the question as to how to formalise the concept of com-
putational paths (sequences of rewrites) as equalities between two terms of the
same type. The intention is to demonstrate the use of a term rewriting sys-
tem in performing computations with these computational paths, establishing
equalities between equalities, and further higher equalities, in particular, in the
calculation of fundamental groups of surfaces such as the circle, the torus and
the real projective plane.

1. Introduction
The identity type is arguably one of the most interesting entities of Martin-Löf type the-
ory. From any type A, one can construct the identity type IdA(x, y) as the relation of
identity between two terms of A, i.e., if there is x =p y : A, where p is a witness or
proof that x is indeed equal to y. And this allows for the interpretation of the identity type
as the type of paths between two points of the same space giving rise to the interesting
rendition of equality as a collection of homotopical paths. This connection of type theory
and homotopy theory makes type theory a suitable foundation for both computation and
mathematics. Nevertheless, in the ‘oficial’ formulation of homotopy type theory this in-
terpretation is only a semantical one since paths do not have a syntactical counterpart. For
that reason, the addition of terms to formalise paths in the syntax of what might be called
‘explicit’ homotopy type theory has been proposed by de Queiroz, Ramos and de Oli-
veira [de Queiroz et al. 2016, Ramos et al. 2017]. The idea is to make use of a calculus
of terms representing computational paths, proposed by de Queiroz and Gabbay in 1994
[de Queiroz and Gabbay 1994], and demonstrate that it can be useful for formalizing the
identity type in a more explicit manner. And this is shown to be useful in calculating and
formally proving the fundamental group of surfaces.

On the other hand, one of the main interesting points of the interpretation
of logical connectives via deductive systems which use a labelling system is
the clear separation between a functional calculus on the labels (the names
that record the steps of the proof) and a logical calculus on the formulas
[Martin-Löf 1975, de Queiroz and Gabbay 1994]. The works of [de Queiroz et al. 2016,
de Queiroz and Gabbay 1994, de Queiroz et al. 2011] claim that the harmony that comes
with this separation makes labelled natural deduction a suitable framework to study and
develop a theory of equality for natural deduction. Take, for example, the following cases
from the λ-calculus :

(λx.(λy.yx)(λw.zw))v Bη (λx.(λy.yx)z)v Bβ (λy.yv)z Bβ zv



(λx.(λy.yx)(λw.zw))v Bβ (λx(λw.zw)x)v Bη (λx.zx)v Bβ zv

In the theory of the βη-equality of λ-calculus, we can indeed say that
(λx.(λy.yx)(λw.zw))v is equal to zv. Moreover, there are at least two ways of obtai-
ning these equalities. We can go further, and call s the first sequence of rewrites that
establish that (λx.(λy.yx)(λw.zw))v is indeed equal to zv. The second one, for example,
can be called r. Thus, we can say that this equality is established by s and r. As such, s
and r are examples of an entity here called computational path.

Since we now have terms (that establish the equality between two (path) terms, interesting
questions arise: (i) is s different from r; (ii) are there normal forms of this equality proof;
(iii) if s is equal to r, how can we prove this? Questions like these can be answered when
we work in a labelled natural deduction framework. The idea is that we are not limited by
the calculus on the formulas, but we can also define and work with rules that apply to the
labels. That way, we can use these rules to formally establish the equality between these
labels, i.e., establish equalities between equalities. Here we shall use a system proposed
by [de Oliveira 1995] and known as LNDEQ -TRS .

A recent presentation by Michael Shulman (Homotopy type theory - A high-level language
for invariant mathematics, March 2019) draws attention to the importance of Voevodsky’s
homotopy type theory in finding a proper framework to deal with higher-order equalities:
“Homotopy type theory is a high-level abstract framework for working with sameness.”

In that context, the intention here is show how to concretely witness an interesting con-
nection: to use a labelled natural deduction system together with a rewriting system
LNDEQ − TRS to obtain topological results about fundamental groups. Indeed, the idea
is to develop a framework for dealing with such expressions representing computational
paths and show that it is powerful enough to provide the formal tools to calculate the
fundamental group of surfaces such as the circle, the torus and the real projective plane.
Taking into account that in mathematics the calculation of a fundamental group is quite
laborious, we believe our framework may prove useful in this calculation in a less com-
plex form. Nevertheless, to obtain this result we first need to formally define the concept
of computational paths and define LNDEQ -TRS .

This is part of an ongoing project [Ramos et al. 2017, Veras et al. 2019, Veras et al. 2020]
which, while it looks for the use of homotopy structures such as groupoids in the study
of semantics of computation, it also seeks to demonstrate the utility and the impact of
the so-called Curry-Howard interpretation of logical deduction in the actual practice of an
important area of mathematics, namely homotopy theory. The short citation for the Royal
Swedish Academy of Sciences’ “2020 Rolf Schock Prize in logic and philosophy”says
that it was awarded to Per Martin-Löf (shared with Dag Prawitz) “for the creation of
constructive type theory.”In a longer statement, the prize committee recalls that cons-
tructive type theory is “a formal language in which it is possible to express constructive
mathematics”(...) “[which] also functions as a powerful programming language and has
had an enormous impact in logic, computer science and, recently, mathematics.”

By introducing a framework in which the formalisation of the logical notion of equality is
done via the so-called “identity type”, one is presented with the possibility for a surprising
connection between term rewriting and geometric concepts such as path and homotopy.
And indeed, Martin-Löf’s type theory (MLTT) allows for making useful bridges between



theory of computation, algebraic topology, logic, categories, and higher algebra, and a sin-
gle concept seems to serve as a bridging bond: “path”. Its impact in mathematics has been
felt more strongly since the start of V. Voevodsky’s program on the univalent foundations
of mathematics around 2005, and one specific aspect which we would like to address here
is the calculation of fundamental groups of surfaces. We know that calculation of homo-
topy groups is in general much more difficult than some of the other homotopy invariants
learned in algebraic topology. Now, by using an alternative formulation of the “identity
type”which provides an explicit formal account of “path”, operationally understood as an
invertible sequence of rewrites (such as Church’s “conversion”), and interpreted as a ho-
motopy, we seek to provide examples of calculations of fundamental groups of surfaces
such as the circle, the torus, the 2-holed torus, the Klein bottle, and the real projective
plane. These examples seem to bear witness to the impact of MLTT in mathematics by
offering formal tools to calculate and prove fundamental groups, as well as allowing to
make such calculations and proofs amenable to be dealt with by systems of formal mathe-
matics and interactive theorem provers such as Coq, Lean, and similar ones.

2. A topological application of labelled natural deduction
In homotopy theory, the fundamental group is the one formed by all equivalence classes
up to homotopy of paths (loops) starting from a point x0 and also ending at x0. Since we
use computational paths as the syntactic counterpart of homotopic paths in type theory,
we will use terms to formalize loops in a surface. Consider the type S1 (circle), and let
x0 : S1 be a base term, and x0 =

α
x0 be a computational path that starts and ends at x0,

going around the circle clockwise. We can then define this path as a base path, capable
of generating any path in the circle, and denote it by loopx0 . However, for simplicity, we
can omit the x0, but it is implied that loops will be made at the base point and denoted
by loop1. Thus, the path (loop) formed by two turns based on x0, around the circle in
a clockwise direction, can be denoted by loop2; a counterclockwise loop for loop−1, in
general, loopn denotes the path formed by n clockwise turns in the circle, based on x0,
with n ∈ Z . If n = 0 we can say that this is the homotopic path to the point and denote
it by loop0.

Now, imagine the path formed by three clockwise turns and two counterclockwise turns.
This path is different from loop1, but it is equivalent to it, that is, we can say that it is a
rewrite of the computational path loop or loop1, so it is relevant here to define a rewrite
equivalence, and we can simply denote by [loopn]rw every computational path that is
equivalent to, or a rewrite of, the loopn path.
Definition 2.1 Let: (i) A be a type; (ii) x0 : A a base point; (iii) x0 =

αi

x0, be a family

of generator paths with i ∈ I; (iv) a family of relationships between the terms paths
τj(x0 =

αr

x0, x0 =
αs

x0). We can define the structure Π1(A, x0) as the set of terms αx0 ,

given by finite applications of τ , σ, and ρ in αi, modulo rw equality and modulo family of
identity type terms Idτj .
Since each element in Π1(A, x0) is a loop in x0, we have:
Definition 2.2 Let [loopn]rw be the path naturally obtained by the application of the
path-axioms ρ, τ and σ to the base path x0 =

loop
x0, where n ∈ N. Particularly we

can say: (i) [loop0]rw = [ρx0 ]rw, n = 0; (ii) [loop1]rw = [loop]rw; (iii) [loopn]rw =
τ
(
[loopn−1]rw, [loop

1]rw
)
, n > 0; (iv) [loopn]rw = σ([loop−n]rw), −n > 0.



2.1. Fundamental group of the circle

Definition 2.3 (The circle S1) The circle is the type generated by: (i) A base point -
x0 : S1; (ii) A base computational path - x0 =

loop
x0 : S1.

The first thing one should notice is that this definition does not use only the points of the
type S1, but also a base computational path called loop between those points. That is why
it is called a higher inductive type. Our approach differs from the one developed in the
HoTT book in that we do not need to simulate the path-space between those points via
an encode-decode function, since we have paths in the syntax of the theory. (Even if the
following are not new results, the point is that they are new proofs which are formalised
in a way that the paths are explicitly given in the syntax.)

Theorem 2.1 ([Veras et al. 2019]) Π1(S
1, x0) ' Z.

2.2. Fundamental group of the torus

Consider T2 as the surface known as Torus and the point x0 ∈ T2. We prove that the
fundamental group of the torus is isomorphic to Z× Z. Here we will also use Definition
2.1 with some simple adaptations. We work with paths up to rw-equality.

Theorem 2.2 ([Veras et al. 2019]) Π1 (T2, x0) ' Z× Z.

2.3. Fundamental group of the real projective plane

The real projective plane, denoted by RP2, is by definition the set of all straight lines
that pass through the origin of space R3. We can define each of these lines by a position
vector vr, with ‖vr‖ 6= 0, so we have that RP2 is a quotient space of R3 − (0, 0) under
the equivalence relation vr ∼ λvr for scalars λ 6= 0. If we impose the condition that the
vectors ‖vr‖ = 1 then RP2 is a quotient space S2 under the equivalence relation vr ∼ −vr,
the sphere with antipodal points identified, where vr is position vector.

Theorem 2.3 ([Veras et al. 2019]) Π1(RP2) ' Z2.
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