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Abstract. Using computational paths as the fundamental concept, we show
that we can leverage Category Theory to propose the concept of fundamental
groupoid of a type.

1. Introduction
When the topic is type theory, the two most widely known theories are Alonzo Church’s
typed λ-calculus and Per Martin-Löf’s intuitionistic type theory. Here we are particularly
interested in the latter one. Intuitionistic type theory has two main variations, the inten-
sional and extensional ones. The intensional version comes with a formulation of identity
type which allows for the incorporation of paths in the syntax, and this helps to make
a bridge connecting Type Theory with Homotopy Theory. This connection was respon-
sible for the formulation of a new theory called Homotopy type theory [Awodey 2012].
Since its formulation, it has rapidly become an area of intensive research. The main
reason for that was the discovery of Univalent Models by Vladimir Voevodsky in 2005
[Voevodsky 2014]. This discovery showed that homotopy type theory is not just a com-
putational type theory, but also an important theory of mathematics. In fact, Voevodsky
himself argued that this theory is more suitable for working as the foundations of mathe-
matics than the well-established set theory [Voevodsky 2014].

The identity type is the bridge that connects type theory and homotopy theory.
In type theory, given a type A and elements a and b of type A, we can think of an iden-
tity type IdA(a,b) as the type of proofs that a and b are equal. That way, every element
p (also known as the witness p) of the type IdA(a,b) can be interpreted as a proof that
establishes that a and b are propositionally equal [Univalent Foundations Program 2013].
Within the homotopy interpretation, the type A is considered as a topological space A and
the elements a and b are considered points of A. Furthermore, the element p of IdA(a,b)
is a homotopical path between points a and b [Univalent Foundations Program 2013].
Adding this interpretation to the intuitionistic type theory forms the homotopy type
theory. Homotopy type theory has some groundbreaking results, as one can check in
[Univalent Foundations Program 2013]. In this work, the main interest in homotopy type
theory is its relation with an entity called computational paths. This relation, together
with a formal definition of a computational path, are given in the following subsection.

2. Computational Paths
A computational path, also known as a sequence of rewrites, is an entity that arises from
the notion that two computational objects are equal iff they have a computational path



connecting them. Before we try to formally define a computational path, we need to
recall some concepts of λ-calculus. In the theory of λ-calculus, we have a formal theory
called λβη theory of λβη-equality [Hindley and Seldin 2008]. This theory consists of
axioms and rules of inferences. Using these axioms and rules, we can formally show the
equality of two λ-formulas, M = N [Hindley and Seldin 2008]. We are interested in an
equality theory for Martin-Löf’s type theory though. Based in the theory of λβη-equality,
we can obtain the following axioms for Martin-Löf’s type theory [Ramos et al. 2017]:

N : A
[x : A]
M : B(β)

(λx.M)N = M[N/x] : B

[x : A]
M = M’ : B(ξ)

λx.M = λx.M’ : (Πx : A)B

M : A(ρ)
M = M : A

M = M’ : A N : (Πx : A)B
(µ)

NM = NM’ : B
M = N : A(σ)
N = M : A

N : A M = M’ : (Πx : A)B
(υ)

MN = M’N : B
M = N : A N = P : A(τ )

M = P : A
M: (Πx : A)B

(η) (x /∈ FV(M))(λx.Mx) = M: (Πx : A)B
Aside from these axioms, another important operation is the change of bound

variables, denoted by α-equality [Ramos et al. 2017].

Definition 2.1 (Computational path [Ramos et al. 2017]) Let a and b be elements of a
type A. A Computational path from a to b is a sequence of definitional equalities (each
definitional equality is either an application of an equality axiom or a change of bound
variables) starting in a and arriving at b.

As an example, take the reduction (λy.yv)z : ABβ zv : A. We say that (λy.yv)z :
A is equal to zv : A because there is a computational path β((λy.yv)z, zv) that establishes
this equality. Moreover, the equality axiom τ can be used to compose paths. So, for
example, take the reductions (λx.(λy.yx)z)v Bβ (λy.yv)z Bβ zv. This time we had to
apply β axiom two times. The computational path that establishes the equality between
(λx.(λy.yx)z)v and zv will then be the composition of the two β paths. This composition
can be made by applying the τ axiom, resulting in the path τ(β, β), which establishes the
equality between (λx.(λy.yx)z)v and zv.

2.1. Rewrite system and rw-equalities

One essential aspect of computational paths is that they carry a notion of reduction and
normal form. A reduction happens when we remove a redundancy from a computational
path. To see this, consider a path p. Starting from p, we can apply the rewrite σ(symmetry)
twice in a row, obtaining σ(σ(p)). We are inverting p twice. That way, starting at p and
inverting it two times will result in ending at p. Therefore, we consider that σ(σ(p)) has a
redundancy and that it can be reduced to p. We use the notation σ(σ(p)) Brw p to indicate
that σ(σ(p)) reduces to p (In this case, we could use B1rw indicating that the reduction
made was only one single reduction). To explain the concept of computational path re-
ductions, we used a simple example involving symmetry. Nevertheless, there are many
redundancies generated by the equality axioms and some are rather involved. A reduc-
tion rule (i.e., a rule that removes a redundancy) is known as rw-rule [Ramos et al. 2017].



The system with all rw-rules is called LNDEQS-RWS [de Queiroz et al. 2016]. This sys-
tem is also terminating and confluent. The formal proofs of these properties are given in
[de Queiroz and de Oliveira 1994, de Oliveira and de Queiroz 1999]. The subset of rules
used in this work are:

Rules involving σ and ρ: σ(ρ) Bsr ρ σ(σ(r)) Bss r
Rules involving τ : τ (r,σ(r)) Btr ρ τ (σ(r),r) Btsr ρ τ (r,ρ) Btrr r τ (ρ,r) Btlr r
Rule involving τ and τ : τ (τ (t,r),s) Btt τ (t, τ (r,s))

Definition 2.2 (rw-equality [Ramos et al. 2017]) Let a and b be computational paths.
We say that a =rw b (read as: a is rw-equal to b) iff b can be obtained from a by a finite
(perhaps empty) series of rw-contractions and reversed rw-contractions. In other words,
a =rw b iff there exists a sequence R0,....,Rn, with n ≥ 0, such that (∀i ≤ n - 1) (RiB1rw

Ri+1 or Ri+1 B1rw Ri), where R0=a and Rn=b.

3. Fundamental Groupoid of a type
In a previous work [Ramos et al. 2017] we have noticed that a computational path fol-
lows a structure which is very similar to the one of a category. Informally speaking, a
category is a mathematical entity composed by objects and morphisms (arrows) between
the objects. These morphisms can be composed under certain conditions and this com-
position must be associative, i.e., (f ◦ g) ◦ h = f ◦ (g ◦ h), and for every object there
exists an identity morphism. One of the most interesting parts is that the structure that
we have achieved is not, in the strict sense, a category. The reason for that is the fact that
the composition properties do not hold under equality. Nonetheless, we have concluded
that the properties held when we changed the equality for rw-equality. In this sense, the
properties hold under rw-equality. In the literature, we consider such structure as being a
weak category.

Definition 3.1 (Arw [Ramos et al. 2017]) Arw is a structure composed by objects and
morphisms. The objects are elements a : A and the morphisms (also known as arrows)
are computational paths between two objects.

A groupoid is a category for which every arrow is an isomorphism [Awodey 2010].
An arrow s: a → b is considered an isomorphism if it has an arrow t: b → a such that
τ (s,t) = ρa and τ (t,s) = ρb. Since these equalities will hold only up to rw-equality, we
propose the following:

Proposition 3.1 ([Ramos et al. 2017]) Arw has a weak groupoid structure.

Proof First, we need to prove that Arw is a weak category. To do that, we need to define
composition of morphisms and the identity arrow. For that, let composition of paths s ◦ t
be given by application of the transitivity identifier, i.e., s ◦ t = τ(t, s). The identity
morphism of an object a is given by the reflexive path a =ρa a. We need now to check
the associative and identity laws. The associativity equation holds weakly, we just need
to use the tt rule: τ(τ(s, r), t) =rwtt τ(s, τ(r, t)).

Using rules tlr and trr, we show that the identity laws also hold weakly: s◦1a = s◦ρa =
τ(ρa, s) =rwtlr

s and 1b ◦ s = ρb ◦ s = τ(s, ρb) =rwtrr s.

With these conditions satisfied, we conclude that Arw is indeed a weak category. Now we
need to show that it is a weak groupoid. For that, we need to show that every computa-
tional path s has an inverse computational path s′. Finding s′ is easy, just put s′ = σ(s).



To show that the equalities of the isomorphism hold weakly, we use rules tr and tsr:
s ◦ s′ = s ◦ σ(s) = τ(σ(s), s) =rwtsr ρb and s′ ◦ s = σ(s) ◦ s = τ(s, σ(s)) =rwtr ρa. �

With that, we conclude that every type A has a underlying groupoid structure
Arw. We call this structure the fundamental groupoid of the type A. In a sense, using
the topological interpretation of a type, one can think of the type A as the equivalent
of a space A and the fundamental groupoid of type A as the fundamental group of the
space A. This concept of a fundamental groupoid gives rise to interesting results. First,
one can use the concept of fundamental groupoid to show, using an entire computational
interpretation, that it is possible to prove that the fundamental groupoid of the circle S1 is
equivalent to the integers Z [Ramos et al. 2018]. Another possible conclusion is that one
can think of computational paths of computational paths, which generates categories of
higher dimensions. That makes possible interpretation of groupoids of higher structures,
as showed in [Ramos et al. 2017]. With that in mind, we conclude that the fundamental
groupoid of a type is a key concept that gives rise to multiple lines of further research.
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