Leafy spanning k-forests*

Cristina G. Fernandes ${ }^{1}$, Carla N. Lintzmayer ${ }^{2}$, Mário César San Felice ${ }^{3}$
${ }^{1}$ Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil
${ }^{2}$ Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
${ }^{3}$ Departamento de Computação, Universidade Federal de São Carlos, Brazil
cris@ime.usp.br, carla.negri@ufabc.edu.br, felice@ufscar.br

Abstract

We denote by Maximum Leaf Spanning k-Forest the problem of, given a positive integer k and a graph G with at most k components, finding a spanning forest in G with at most k components and the maximum number of leaves. A leaf in a forest is defined as a vertex of degree at most one. The case $k=1$ for connected graphs is known to be NP-hard, and is well studied in the literature, with the best approximation algorithm proposed more than 20 years ago by Solis-Oba. The best known approximation algorithm for MAXImum Leaf Spanning k-Forest with a slightly different leaf definition is a 3-approximation based on an approach by Lu and Ravi for the $k=1$ case. We extend the algorithm of Solis-Oba to achieve a 2-approximation for MAXIMUM Leaf Spanning k-Forest.

1. Introduction

The problem of, given a connected graph, finding a spanning tree with maximum number of leaves is well-known in the literature. With many applications in network design problems, the best known result for it is a 2 -approximation algorithm proposed by SolisOba [Solis-Oba 1998, Solis-Oba et al. 2017] more than 20 years ago. We consider a generalization of this problem where the goal is to find a spanning forest with a specific number of components with as many leaves as possible.

For any graph G, let $c(G)$ denote the number of connected components of G. A forest F is called a k-forest if $c(F) \leq k$. The Maximum Leaf Spanning k-Forest is the following problem: given a positive integer k and a graph G with $c(G) \leq k$, find a spanning k-forest of G with the maximum number of leaves. Let opt (G, k) denote the maximum number of leaves in such a forest. This problem was introduced by Reis et al. [Reis et al. 2017], who presented a 3-approximation algorithm for connected graphs, inspired by a 3-approximation for the case $k=1$ [Lu and Ravi 1998].

For a forest F, there are two possible definitions of a leaf. A leaf could be defined as a vertex of degree at most one in F, or one can consider each component of F as a rooted tree, and define a leaf as a vertex of degree 1 in the forest which is not a root. The former is the definition we adopt, while the latter is the definition adopted by Reis et al. [Reis et al. 2017].

In this paper, we present a 2 -approximation algorithm for Maximum Leaf SPANNING k-FOREST, by adapting the 2-approximation of Solis-Oba for the case $k=1$.

[^0]
2. Revisiting Solis-Oba's algorithm

For a given graph H that has at least one vertex of degree 3 or more, a tree obtained by the procedure MaximalSOTree, given in Algorithm 1, is called an SO-tree. The routine $\operatorname{Expand}(H, T, v)$ receives a tree T in H and a leaf v of T with at least two neighbors in $\overline{V(T)}=V(H) \backslash V(T)$ and adds to T the edges from v to all its neighbors in $\overline{V(T),}$ returning the resulting extended tree.

```
Algorithm 1 MaximalSOTree \((H, r)\)
Input: a graph \(H\) with a vertex \(r\) of degree at least 3 in \(H\)
Output: an SO-tree in \(H\)
    let \(T\) be the tree consisting of \(r\) and its neighbors in \(H\)
    expanding \(\leftarrow\) true
    while expanding do
        if there is a leaf \(v\) in \(T\) with at least two neighbors not in \(T\) then
            \(T \leftarrow \operatorname{ExpAND}(H, T, v)\)
        else if there is a leaf \(v\) in \(T\) with a neighbor \(u\) not in \(T\)
                    that has at least three neighbors not in \(T\) then
            \(T \leftarrow T \cup\{u v\}\)
            \(T \leftarrow \operatorname{ExPAND}(H, T, u)\)
        else if there is a leaf \(v\) in \(T\) with a neighbor \(u\) not in \(T\)
                    that has two neighbors not in \(T\) then
            \(T \leftarrow T \cup\{u v\}\)
            \(T \leftarrow \operatorname{ExPAND}(H, T, u)\)
        else expanding \(\leftarrow\) false
    return \(T\)
```

A maximal SO-forest is a maximal collection of disjoint SO-trees. Note that each SO-tree has at least one vertex of degree three or more. Algorithm 2, called SOFo$\operatorname{REST}(G)$, obtains a maximal SO-forest in a graph G.

```
Algorithm 2 SOFOREST( \(G\) )
Input: a graph \(G\)
Output: a maximal SO-forest in \(G\)
    \(F \leftarrow \emptyset\)
    \(H \leftarrow G\)
    while there is a vertex \(r\) with degree at least 3 in \(H\) do
        \(T \leftarrow \operatorname{MaximaLSOTREE}(H, r)\)
        \(F \leftarrow F \cup\{T\}\)
        \(H \leftarrow H-V(T)\)
    return \(F\)
```

We call a vertex tight if it made the role of vertex u in line 9 during any execution of MaximalSOTREe (H, r). For a graph G, let B be the set of all tight vertices within an execution of $\operatorname{SOFORESt}(G)$. For a forest F, let $\ell(F)$ denote the number of leaves in F.

In the proof of Lemma 2 of [Solis-Oba et al. 2017], the authors proved the following about the forest F produced by $\operatorname{SOForest}(G)$:

$$
\begin{equation*}
\ell(F) \geq \frac{|V(F)|-|B|}{2}+c(F) . \tag{1}
\end{equation*}
$$

Corollary 10 of [Solis-Oba et al. 2017] states that, for a connected graph G and any spanning tree T of G,

$$
\begin{equation*}
\ell(T) \leq|V(F)|-|B|-2 c(F)+3 . \tag{2}
\end{equation*}
$$

3. The algorithm

Next we present our algorithm for Maximum Leaf Spanning k-Forest. We start by running the first phase of Solis-Oba algorithm, that builds a maximal SO-forest F, even if G is disconnected. Thus, the bound given by Eq. (1) is still valid.

Let $G_{1}, \ldots, G_{c(G)}$ be the components of G. For $1 \leq i \leq c(G)$, let F_{i} and B_{i} be, respectively, the maximal SO-forest F restricted to G_{i}, and set B restricted to G_{i}. Also, let T_{i} be any spanning tree of G_{i}, and let \mathcal{F} be the forest containing such trees. Then, as in Eq. (2), it holds that $\ell\left(T_{i}\right) \leq\left|V\left(F_{i}\right)\right|-\left|B_{i}\right|-2 c\left(F_{i}\right)+3$, and thus

$$
\begin{equation*}
\ell(\mathcal{F}) \leq|V(F)|-|B|-2 c(F)+3 c(G) . \tag{3}
\end{equation*}
$$

We prove the following upper bound on opt (G, k) involving a maximal SO-forest.
Lemma 3.1. Let F be a maximal SO-forest in a graph G with $c(G) \leq k$. Then

$$
\operatorname{opt}(G, k) \leq 2 \ell(F)-4 c(F)+2 k+c(G)
$$

Consider a component G_{i} such that F_{i} is a nonempty forest. As Solis-Oba already observed, $G_{i}-V\left(F_{i}\right)$ is a set \mathcal{P}_{i} of paths, because F_{i} is a maximal SO-forest in G_{i}. Moreover, all edges in G_{i} from \mathcal{P}_{i} to F_{i} are incident to ends of paths in \mathcal{P}_{i}. Let \mathcal{P} be the union of the sets \mathcal{P}_{i}. A component G_{i} where F_{i} is empty consists of a path or a cycle. Each such component contributes with at least one component in any spanning forest of G. Let \mathcal{P}^{\prime} be a set with one spanning path in each such path or cycle component of G.

From F, we create F^{\prime} by adding the set \mathcal{P}^{\prime} to F. Our goal is to obtain from F^{\prime} a spanning forest with at most k components, keeping as many leaves as possible. Then, if the number of components in F^{\prime} is too small, its number of leaves might be small as well, so we try to augment it applying any of the two improvement steps:

Promotion step: \quad if there is a path P in \mathcal{P}, add P to F^{\prime} and remove it from \mathcal{P}.
Division step: \quad if there is a degree- 2 vertex v in F^{\prime}, remove an edge incident to v.
Note that each improvement step increases the number of components in F^{\prime} by one and increases the number of leaves in F^{\prime} by at least one. If, on the other hand, the number of components in $F^{\prime}=F \cup \mathcal{P}^{\prime}$ is too high, then we have to reduce it, which can be done by repeatedly connecting two components. After (possibly) applying these steps, the remaining paths in $\mathcal{P}=G-V\left(F^{\prime}\right)$ can be attached to F^{\prime} to produce a spanning forest $F^{\prime \prime}$ with the same number of leaves and components as F^{\prime}. The algorithm is formalized in Algorithm 3, and the next theorem guarantees its approximation ratio.
Theorem 3.2. LeafyForest is a 2-approximation for Maximum Leaf Spanning k-FOREST.

```
Algorithm 3 LEAFYFOREST \((G, k)\)
Input: a graph \(G\) and a positive integer \(k \geq c(G)\)
Output: a spanning \(k\)-forest with at least opt \((G, k) / 2\) leaves
    \(F \leftarrow \operatorname{SOFORESt}(G)\)
    let \(\mathcal{P}^{\prime}\) be a set which contains one spanning path in each path or cycle component of \(G\)
    \(F^{\prime} \leftarrow F \cup \mathcal{P}^{\prime}\)
    \(\mathcal{P} \leftarrow G-V\left(F^{\prime}\right) \quad \triangleright \mathcal{P}\) is a set of paths
    \(c \leftarrow c\left(F^{\prime}\right)\)
    if \(c<3 k / 4\) then \(\triangleright\) improvement steps
        \(p \leftarrow \min \{k-c,|\mathcal{P}|\}\)
        add \(p\) paths from \(\mathcal{P}\) to \(F^{\prime}\) and remove them from \(\mathcal{P}\)
        \(c \leftarrow c+p\)
        while \(c<k\) and there is a degree- 2 vertex \(v\) in a component of \(F^{\prime}\) do
            remove an edge incident to \(v\) from \(F^{\prime}\)
            \(c \leftarrow c+1\)
    else \(\triangleright\) components reduction steps
        while \(c>k\) do \(\quad \triangleright c=c\left(F^{\prime}\right)>c(G)\)
                connect two components of \(F^{\prime}\) from the same component of \(G\) through leaves
                \(c \leftarrow c-1\)
    let \(F^{\prime \prime}\) be \(F^{\prime}\) after attaching each path in \(G-V\left(F^{\prime}\right)\) to a leaf of \(F^{\prime}\)
    return \(F^{\prime \prime}\)
```


4. Final remarks

For the alternative leaf definition, the difference occurs for the components that consist of a singleton or a single edge. Even though this difference seems small, so far we could not prove an approximation ratio better than 3 for Algorithm 3 with this different leaf definition, which would be an improvement of Reis, Felice, Lee, and Usberti [Reis et al. 2017]'s result. We are currently trying to adapt our algorithm to obtain a 2-approximation for their version of the problem.

Referências

Lu, H. and Ravi, R. (1998). Approximating maximum leaf spanning trees in almost linear time. Journal of Algorithms, 29(1):132-141.

Reis, M. F., Felice, M. C. S., Lee, O., and Usberti, F. L. (2017). A 3-approximation algorithm for the maximum leaf k-forest problem. Electronic Notes in Discrete Mathematics, 62:201-206.

Solis-Oba, R. (1998). 2-Approximation algorithm for finding a spanning tree with maximum number of leaves. In Proceedings of the European Symposium on Algorithms (ESA), volume 1461 of Lecture Notes in Computer Science, pages 441-452.

Solis-Oba, R., Bonsma, P., and Lowski, S. (2017). A 2-approximation algorithm for finding a spanning tree with maximum number of leaves. Algorithmica, 77:374-388.

[^0]: *C. G. Fernandes was partially supported by CNPq (Proc. 308116/2016-0 and 423833/2018-9). C. N. Lintzmayer was partially supported by CNPq (Proc. 428385/2018-4).

