
Leafy spanning k-forests*

Cristina G. Fernandes1, Carla N. Lintzmayer2, Mário César San Felice3

1 Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil

2Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil

3Departamento de Computação, Universidade Federal de São Carlos, Brazil

cris@ime.usp.br, carla.negri@ufabc.edu.br, felice@ufscar.br

Abstract. We denote by MAXIMUM LEAF SPANNING k-FOREST the problem
of, given a positive integer k and a graph G with at most k components, finding
a spanning forest in G with at most k components and the maximum number
of leaves. A leaf in a forest is defined as a vertex of degree at most one. The
case k = 1 for connected graphs is known to be NP-hard, and is well studied
in the literature, with the best approximation algorithm proposed more than 20
years ago by Solis-Oba. The best known approximation algorithm for MAXI-
MUM LEAF SPANNING k-FOREST with a slightly different leaf definition is a
3-approximation based on an approach by Lu and Ravi for the k = 1 case. We
extend the algorithm of Solis-Oba to achieve a 2-approximation for MAXIMUM
LEAF SPANNING k-FOREST.

1. Introduction
The problem of, given a connected graph, finding a spanning tree with maximum num-
ber of leaves is well-known in the literature. With many applications in network design
problems, the best known result for it is a 2-approximation algorithm proposed by Solis-
Oba [Solis-Oba 1998, Solis-Oba et al. 2017] more than 20 years ago. We consider a ge-
neralization of this problem where the goal is to find a spanning forest with a specific
number of components with as many leaves as possible.

For any graph G, let c(G) denote the number of connected components of G. A
forest F is called a k-forest if c(F) ≤ k. The MAXIMUM LEAF SPANNING k-FOREST
is the following problem: given a positive integer k and a graph G with c(G) ≤ k, find
a spanning k-forest of G with the maximum number of leaves. Let opt(G, k) denote the
maximum number of leaves in such a forest. This problem was introduced by Reis et
al. [Reis et al. 2017], who presented a 3-approximation algorithm for connected graphs,
inspired by a 3-approximation for the case k = 1 [Lu and Ravi 1998].

For a forest F , there are two possible definitions of a leaf. A leaf could be defined
as a vertex of degree at most one in F , or one can consider each component of F as a
rooted tree, and define a leaf as a vertex of degree 1 in the forest which is not a root.
The former is the definition we adopt, while the latter is the definition adopted by Reis et
al. [Reis et al. 2017].

In this paper, we present a 2-approximation algorithm for MAXIMUM LEAF
SPANNING k-FOREST, by adapting the 2-approximation of Solis-Oba for the case k = 1.

*C. G. Fernandes was partially supported by CNPq (Proc. 308116/2016-0 and 423833/2018-9). C. N.
Lintzmayer was partially supported by CNPq (Proc. 428385/2018-4).

2. Revisiting Solis-Oba’s algorithm

For a given graph H that has at least one vertex of degree 3 or more, a tree obtained by the
procedure MAXIMALSOTREE, given in Algorithm 1, is called an SO-tree. The routine
EXPAND(H , T , v) receives a tree T in H and a leaf v of T with at least two neighbors
in V (T) = V (H) \ V (T) and adds to T the edges from v to all its neighbors in V (T),
returning the resulting extended tree.

Algorithm 1 MAXIMALSOTREE(H , r)
Input: a graph H with a vertex r of degree at least 3 in H
Output: an SO-tree in H

1: let T be the tree consisting of r and its neighbors in H
2: expanding ← true
3: while expanding do
4: if there is a leaf v in T with at least two neighbors not in T then
5: T ← EXPAND(H , T , v)
6: else if there is a leaf v in T with a neighbor u not in T

that has at least three neighbors not in T then
7: T ← T ∪ {uv}
8: T ← EXPAND(H , T , u)
9: else if there is a leaf v in T with a neighbor u not in T

that has two neighbors not in T then
10: T ← T ∪ {uv}
11: T ← EXPAND(H , T , u)
12: else expanding ← false
13: return T

A maximal SO-forest is a maximal collection of disjoint SO-trees. Note that each
SO-tree has at least one vertex of degree three or more. Algorithm 2, called SOFO-
REST(G), obtains a maximal SO-forest in a graph G.

Algorithm 2 SOFOREST(G)
Input: a graph G
Output: a maximal SO-forest in G

1: F ← ∅
2: H ← G
3: while there is a vertex r with degree at least 3 in H do
4: T ← MAXIMALSOTREE(H, r)
5: F ← F ∪ {T}
6: H ← H − V (T)

7: return F

We call a vertex tight if it made the role of vertex u in line 9 during any execution
of MAXIMALSOTREE(H , r). For a graph G, let B be the set of all tight vertices within an
execution of SOFOREST(G). For a forest F , let `(F) denote the number of leaves in F .

In the proof of Lemma 2 of [Solis-Oba et al. 2017], the authors proved the fol-
lowing about the forest F produced by SOFOREST(G):

`(F) ≥ |V (F)| − |B|
2

+ c(F) . (1)

Corollary 10 of [Solis-Oba et al. 2017] states that, for a connected graph G and any span-
ning tree T of G,

`(T) ≤ |V (F)| − |B| − 2c(F) + 3 . (2)

3. The algorithm

Next we present our algorithm for MAXIMUM LEAF SPANNING k-FOREST. We start by
running the first phase of Solis-Oba algorithm, that builds a maximal SO-forest F , even
if G is disconnected. Thus, the bound given by Eq. (1) is still valid.

Let G1, . . . , Gc(G) be the components of G. For 1 ≤ i ≤ c(G), let Fi and Bi be,
respectively, the maximal SO-forest F restricted to Gi, and set B restricted to Gi. Also,
let Ti be any spanning tree of Gi, and let F be the forest containing such trees. Then, as
in Eq. (2), it holds that `(Ti) ≤ |V (Fi)| − |Bi| − 2c(Fi) + 3, and thus

`(F) ≤ |V (F)| − |B| − 2c(F) + 3c(G) . (3)

We prove the following upper bound on opt(G, k) involving a maximal SO-forest.

Lemma 3.1. Let F be a maximal SO-forest in a graph G with c(G) ≤ k. Then

opt(G, k) ≤ 2 `(F)− 4c(F) + 2k + c(G) .

Consider a component Gi such that Fi is a nonempty forest. As Solis-Oba already
observed, Gi − V (Fi) is a set Pi of paths, because Fi is a maximal SO-forest in Gi.
Moreover, all edges in Gi from Pi to Fi are incident to ends of paths in Pi. Let P be the
union of the sets Pi. A component Gi where Fi is empty consists of a path or a cycle.
Each such component contributes with at least one component in any spanning forest
of G. Let P ′ be a set with one spanning path in each such path or cycle component of G.

From F , we create F ′ by adding the set P ′ to F . Our goal is to obtain from F ′ a
spanning forest with at most k components, keeping as many leaves as possible. Then, if
the number of components in F ′ is too small, its number of leaves might be small as well,
so we try to augment it applying any of the two improvement steps:

Promotion step: if there is a path P in P , add P to F ′ and remove it from P .
Division step: if there is a degree-2 vertex v in F ′, remove an edge incident to v.

Note that each improvement step increases the number of components in F ′ by one and
increases the number of leaves in F ′ by at least one. If, on the other hand, the number of
components in F ′ = F ∪ P ′ is too high, then we have to reduce it, which can be done
by repeatedly connecting two components. After (possibly) applying these steps, the
remaining paths in P = G−V (F ′) can be attached to F ′ to produce a spanning forest F ′′

with the same number of leaves and components as F ′. The algorithm is formalized in
Algorithm 3, and the next theorem guarantees its approximation ratio.

Theorem 3.2. LEAFYFOREST is a 2-approximation for MAXIMUM LEAF SPANNING
k-FOREST.

Algorithm 3 LEAFYFOREST(G, k)
Input: a graph G and a positive integer k ≥ c(G)
Output: a spanning k-forest with at least opt(G, k)/2 leaves

1: F ← SOFOREST(G)
2: let P ′ be a set which contains one spanning path in each path or cycle component of G
3: F ′ ← F ∪ P ′

4: P ← G− V (F ′) . P is a set of paths
5: c← c(F ′)
6: if c < 3k/4 then . improvement steps
7: p← min{k − c, |P|}
8: add p paths from P to F ′ and remove them from P
9: c← c+ p

10: while c < k and there is a degree-2 vertex v in a component of F ′ do
11: remove an edge incident to v from F ′

12: c← c+ 1

13: else . components reduction steps
14: while c > k do . c = c(F ′) > c(G)
15: connect two components of F ′ from the same component of G through leaves
16: c← c− 1

17: let F ′′ be F ′ after attaching each path in G− V (F ′) to a leaf of F ′

18: return F ′′

4. Final remarks
For the alternative leaf definition, the difference occurs for the components that consist of
a singleton or a single edge. Even though this difference seems small, so far we could not
prove an approximation ratio better than 3 for Algorithm 3 with this different leaf defini-
tion, which would be an improvement of Reis, Felice, Lee, and Usberti [Reis et al. 2017]’s
result. We are currently trying to adapt our algorithm to obtain a 2-approximation for their
version of the problem.

Referências
Lu, H. and Ravi, R. (1998). Approximating maximum leaf spanning trees in almost linear

time. Journal of Algorithms, 29(1):132–141.

Reis, M. F., Felice, M. C. S., Lee, O., and Usberti, F. L. (2017). A 3-approximation algo-
rithm for the maximum leaf k-forest problem. Electronic Notes in Discrete Mathema-
tics, 62:201–206.

Solis-Oba, R. (1998). 2-Approximation algorithm for finding a spanning tree with ma-
ximum number of leaves. In Proceedings of the European Symposium on Algorithms
(ESA), volume 1461 of Lecture Notes in Computer Science, pages 441–452.

Solis-Oba, R., Bonsma, P., and Lowski, S. (2017). A 2-approximation algorithm for
finding a spanning tree with maximum number of leaves. Algorithmica, 77:374–388.

