Leafy spanning k-forests®
Cristina G. Fernandes', Carla N. Lintzmayer?, Mario César San Felice®

! Tnstituto de Matematica e Estatistica, Universidade de Sdo Paulo, Brazil
2Centro de Matemética, Computagio e Cogni¢do, Universidade Federal do ABC, Brazil
3Departamento de Computacdo, Universidade Federal de Sao Carlos, Brazil
cris@ime.usp.br, carla.negri@ufabc.edu.br, felice@ufscar.br

Abstract. We denote by MAXIMUM LEAF SPANNING k-FOREST the problem
of, given a positive integer k and a graph G with at most k components, finding
a spanning forest in G with at most k components and the maximum number
of leaves. A leaf in a forest is defined as a vertex of degree at most one. The
case k = 1 for connected graphs is known to be NP-hard, and is well studied
in the literature, with the best approximation algorithm proposed more than 20
years ago by Solis-Oba. The best known approximation algorithm for M AXI-
MUM LEAF SPANNING k-FOREST with a slightly different leaf definition is a
3-approximation based on an approach by Lu and Ravi for the k = 1 case. We
extend the algorithm of Solis-Oba to achieve a 2-approximation for MAXIMUM
LEAF SPANNING k-FOREST.

1. Introduction

The problem of, given a connected graph, finding a spanning tree with maximum num-
ber of leaves is well-known in the literature. With many applications in network design
problems, the best known result for it is a 2-approximation algorithm proposed by Solis-
Oba [Solis-Oba 1998, Solis-Oba et al. 2017] more than 20 years ago. We consider a ge-
neralization of this problem where the goal is to find a spanning forest with a specific
number of components with as many leaves as possible.

For any graph G, let ¢(G) denote the number of connected components of G. A
forest F'is called a k-forest if ¢(F') < k. The MAXIMUM LEAF SPANNING k-FOREST
is the following problem: given a positive integer k£ and a graph G with ¢(G) < k, find
a spanning k-forest of G with the maximum number of leaves. Let opt(G, k) denote the
maximum number of leaves in such a forest. This problem was introduced by Reis et
al. [Reis et al. 2017], who presented a 3-approximation algorithm for connected graphs,
inspired by a 3-approximation for the case £ = 1 [Lu and Ravi 1998].

For a forest F', there are two possible definitions of a leaf. A leaf could be defined
as a vertex of degree at most one in [, or one can consider each component of ' as a
rooted tree, and define a leaf as a vertex of degree 1 in the forest which is not a root.
The former is the definition we adopt, while the latter is the definition adopted by Reis et
al. [Reis et al. 2017].

In this paper, we present a 2-approximation algorithm for MAXIMUM LEAF
SPANNING k-FOREST, by adapting the 2-approximation of Solis-Oba for the case k£ = 1.

*C. G. Fernandes was partially supported by CNPq (Proc. 308116/2016-0 and 423833/2018-9). C. N.
Lintzmayer was partially supported by CNPq (Proc. 428385/2018-4).

2. Revisiting Solis-Oba’s algorithm

For a given graph H that has at least one vertex of degree 3 or more, a tree obtained by the
procedure MAXIMALSOTREE, given in Algorithm 1, is called an SO-tree. The routine
EXPAND(H, T, v) receives a tree T in H and a leaf v of T" with at least two neighbors

in V(T) = V(H)\ V(T) and adds to T the edges from v to all its neighbors in V (7'),
returning the resulting extended tree.

Algorithm 1 MAXIMALSOTREE(H, r)

Input: a graph H with a vertex r of degree at least 3 in H
Output: an SO-tree in H
1: let T be the tree consisting of 7 and its neighbors in H

2: expanding < true
3: while expanding do
4: if there is a leaf v in T" with at least two neighbors not in 7" then
5: T <+ EXPAND(H, T, v)
6: else if there is a leaf v in 7" with a neighbor u not in T’
that has at least three neighbors not in 7' then
7: T+ T U {uv}
8: T < EXPAND(H, T, u)
9: else if there is a leaf v in 7" with a neighbor u not in T’
that has two neighbors not in 7" then
10: T+ T U {uv}
11: T + EXPAND(H, T, u)
12: else expanding < false
13: return T’

A maximal SO-forest is a maximal collection of disjoint SO-trees. Note that each
SO-tree has at least one vertex of degree three or more. Algorithm 2, called SOFO-
REST((7), obtains a maximal SO-forest in a graph G.

Algorithm 2 SOFOREST(G)
Input: agraph G
Output: a maximal SO-forest in G
I: F+ 0
2: H+ G
3: while there is a vertex r with degree at least 3 in H do
4 T + MAXIMALSOTREE(H, r)
5: F«+ FU{T}
6
7

H«+ H-V(T)
. return I

We call a vertex tight if it made the role of vertex w in line 9 during any execution
of MAXIMALSOTREE(H, r). For a graph G, let B be the set of all tight vertices within an
execution of SOFOREST(G). For a forest F', let /(F') denote the number of leaves in F'.

In the proof of Lemma 2 of [Solis-Oba et al. 2017], the authors proved the fol-
lowing about the forest F' produced by SOFOREST(G):

o) s VOB

> 5 c(F). ey

Corollary 10 of [Solis-Oba et al. 2017] states that, for a connected graph G and any span-
ning tree 7" of G,

UT) < |V(F)|—|B| —2¢(F)+3. 2)

3. The algorithm

Next we present our algorithm for MAXIMUM LEAF SPANNING k-FOREST. We start by
running the first phase of Solis-Oba algorithm, that builds a maximal SO-forest I, even
if G is disconnected. Thus, the bound given by Eq. (1) is still valid.

Let Gy, ..., Gyq) be the components of G. For 1 < i < ¢(G), let F; and B; be,
respectively, the maximal SO-forest F' restricted to (&;, and set B restricted to G;. Also,

let 7; be any spanning tree of GG;, and let F be the forest containing such trees. Then, as
in Eq. (2), it holds that ¢(T;) < |V(F;)| — |B;| — 2¢(F;) + 3, and thus

UF) < |V(F)|—|B| = 2¢(F) + 3¢(G) . 3)

We prove the following upper bound on opt(G, k) involving a maximal SO-forest.

Lemma 3.1. Let F' be a maximal SO-forest in a graph G with ¢(G) < k. Then

opt(G, k) < 2U(F) — 4¢(F) + 2k + ¢(G) .

Consider a component (5; such that F; is a nonempty forest. As Solis-Oba already
observed, G; — V/(F;) is a set P; of paths, because F; is a maximal SO-forest in G;.
Moreover, all edges in G; from P; to F; are incident to ends of paths in P;. Let P be the
union of the sets P;. A component G; where F; is empty consists of a path or a cycle.
Each such component contributes with at least one component in any spanning forest
of GG. Let P’ be a set with one spanning path in each such path or cycle component of G.

From F', we create F’ by adding the set P’ to F'. Our goal is to obtain from F’ a
spanning forest with at most £ components, keeping as many leaves as possible. Then, if
the number of components in F” is too small, its number of leaves might be small as well,
so we try to augment it applying any of the two improvement steps:

Promotion step: if there is a path P in PP, add P to F’ and remove it from P.
Division step: if there is a degree-2 vertex v in F’, remove an edge incident to v.

Note that each improvement step increases the number of components in /” by one and
increases the number of leaves in F” by at least one. If, on the other hand, the number of
components in F’ = F U P’ is too high, then we have to reduce it, which can be done
by repeatedly connecting two components. After (possibly) applying these steps, the
remaining paths in P = G — V(F”) can be attached to F” to produce a spanning forest £
with the same number of leaves and components as F’. The algorithm is formalized in
Algorithm 3, and the next theorem guarantees its approximation ratio.

Theorem 3.2. LEAFYFOREST is a 2-approximation for MAXIMUM LEAF SPANNING
k-FOREST.

Algorithm 3 LEAFYFOREST(G, k)
Input: a graph G and a positive integer k& > ¢(G)
Output: a spanning k-forest with at least opt(G, k) /2 leaves
1: F + SOFOREST(G)
let P’ be a set which contains one spanning path in each path or cycle component of G
F' « FUP
P+ G-V(F) > P is a set of paths
¢« c(F")
if ¢ < 3k/4 then > improvement steps
p « min{k — ¢, |P|}
add p paths from P to F’ and remove them from P
9: c+—c+p
10: while ¢ < k and there is a degree-2 vertex v in a component of F’ do
11: remove an edge incident to v from F”
12: c—c+1
13: else > components reduction steps
14: while ¢ > k do >c=c(F') > c(Q)
15: connect two components of F’ from the same component of G through leaves
16: c+—c—1
17: let F” be F” after attaching each path in G — V (F”) to a leaf of F’
18: return F”

4. Final remarks

For the alternative leaf definition, the difference occurs for the components that consist of
a singleton or a single edge. Even though this difference seems small, so far we could not
prove an approximation ratio better than 3 for Algorithm 3 with this different leaf defini-
tion, which would be an improvement of Reis, Felice, Lee, and Usberti [Reis et al. 2017]’s
result. We are currently trying to adapt our algorithm to obtain a 2-approximation for their
version of the problem.

Referéncias

Lu, H. and Ravi, R. (1998). Approximating maximum leaf spanning trees in almost linear
time. Journal of Algorithms, 29(1):132—141.

Reis, M. F,, Felice, M. C. S., Lee, O., and Usberti, F. L. (2017). A 3-approximation algo-
rithm for the maximum leaf k-forest problem. Electronic Notes in Discrete Mathema-
tics, 62:201-206.

Solis-Oba, R. (1998). 2-Approximation algorithm for finding a spanning tree with ma-
ximum number of leaves. In Proceedings of the European Symposium on Algorithms
(ESA), volume 1461 of Lecture Notes in Computer Science, pages 441-452.

Solis-Oba, R., Bonsma, P., and Lowski, S. (2017). A 2-approximation algorithm for
finding a spanning tree with maximum number of leaves. Algorithmica, 77:374-388.

