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Abstract. A roller coaster is a permutation π that maximizes the sum tpπq “
ř

τPXpπq idpτq, whereXpπq denotes the set of subsequences of π with cardinality
at least 3; and idpτq denotes the number of maximal increasing or decreasing
subsequences of contiguous numbers of τ . We denote by tmaxpnq the value tpπq,
where π is a roller coaster of t1, . . . , nu, for n ě 3. Precise values of tmaxpnq
for n ď 13 were presented in [Ahmed and Snevily 2013]. In this paper, we
explore the problem of computing lower bounds for tmaxpnq. More specifically,
we present a cubic algorithm to compute tpπq for any given permutation π; and
an Integer Linear Programming model to obtain roller coasters. As a result, we
improve known lower bounds found in the literature for n ď 40.

1. Introduction
Throughout the text, rns denotes the set t1, . . . , nu. Fixed a positive integer n, a permu-
tation π of rns is an ordering pπ1, π2, π3, ..., πnq of rns. We omit commas and parenthesis
whenever doing so produces no ambiguity. The length of a permutation π is the number
of elements it contains, and we denote it by |π|. Let Sn denote the set of all permutations
of rns, and let |X| denote the cardinality of a set X . A subsequence τ of a permutation π,
denoted by τ Ď π, is a sequence obtained from π by removing some (maybe none) of the
elements of π, while keeping the order of the remaining elements.

Let ipτq (resp. dpτq) be the number of maximal increasing (resp. decreasing)
sequences of contiguous numbers in τ , where a sequence of contiguous numbers con-
sists of at least two consecutive numbers. Let idpτq “ ipτq ` dpτq, and let Xpπq de-
note the set of every subsequence τ Ď π with at least three elements. Finally, we set
tpπq “

ř

τPXpπq idpτq. For illustration, we evaluate it on two permutations of S4:

tp3412q“idp3412q`idp341q`idp342q`idp312q`idp412q

“ 3 ` 2 ` 2 ` 2 ` 2 “ 11.

tp1234q“idp1234q`idp123q`idp124q`idp134q`idp234q

“ 1 ` 1 ` 1 ` 1 ` 1 “ 5.

We define tmaxpnq as the maximum maxπPSn tpπq, and say that a permutation π is a roller
coaster if tpπq “ tmaxpnq. In the example above, 1234 is not a roller coaster because
tp1234q ă tp3412q. On the other hand, it can be verified that 3412 is a roller coaster by
checking that tmaxp4q “ 11. Finally, RCpnq denotes the set of roller coasters of length n.
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Roller Coaster permutations were introduced in [Ahmed and Snevily 2013],
where the authors present values for tmaxpnq for n ď 13, and a construction that provides
lower bounds for n ě 14. The definition of t suggests a θp2nq algorithm to compute t, and
one would take Op2nn!q time exploring every permutation of length n in order to obtain
tmaxpnq. In Section 2, we present an Opn3q algorithm to compute t; and in Section 3, an
Integer Linear Programming model to find roller coasters, together with new bounds for
tmaxpnq for n up to 40.

2. Fast Computation of tpπq
Let π “ π1π2π3...πn P Sn and let 1 ă j ă n. We call the triple πj´1πjπj`1 a peak
(resp. valley) if πj ą πj´1, πj`1 (resp. πj ă πj´1, πj`1). Given a subsequence τ of π,
we denote by ppτq (resp. vpτq) the number of peaks (resp. valleys) of τ . For example,
pp42135q “ 0 but vp42135q “ 1. Given 1 ď i ă j ă k ď n, denote by ∆pπi, πj, πkq the
sum ppπiπjπkq`vpπiπjπkq. Finally, we say that πiπjπk is a triangle if ∆pπi, πj, πkq “ 1.
Proposition 1. Let τ P Sn. Then idpτq “ 1` ppτq ` vpτq.

Proof. Let r “ idpτq, and let τ1, τ2, . . . , τr be the maximal increasing and decreasing
contiguous subsequences of τ , in the order that they appear in τ , where τi “ τ i1 ¨ ¨ ¨ τ

i
si

.
Fix i P t2, . . . , ru. Note that τ i´1si´1

“ τ i1. By the maximality of τi, we have that τi is
increasing if and only if τi´1 is decreasing. This implies that τ i´1si´1´1

τ i1τ
i
2 is either a peak

or a valley. Moreover, these are the only peaks and valleys of τ . Therefore, ppτq`vpτq “
r ´ 1 “ idpτq ´ 1 as desired.

The next result provides an Opn3q algorithm for computing t.
Theorem 1. Let π P Sn. Then

tpπq “ |Xpπq| `
ÿ

1ďiăjăkďn

2n´pk´i`1q∆pπi, πj, πkq. (1)

Proof. First, by Proposition 1, we have:

tpπq “
ÿ

τPXpπq

idpτq “
ÿ

τPXpπq

p1` ppτq ` vpτqq “ |Xpπq| `
ÿ

τPXpπq

pppτq ` vpτqq.

Now, we double count the cardinality of the following set.

E “ tpτ, σq : τ “ τ1 ¨ ¨ ¨ τr P Xpπq, σ “ τiτi`1τi`2, 1 ď i ď r ´ 2 such that ∆pσq “ 1u.

Let d1pτq (resp. d2pσq) denote |tpx, yq P E : x “ τu| (resp. |tpx, yq P E : y “ σu|).
Clearly

ř

τPXpπq d1pτq “ |E| “
ř

σPXpπq,|σ|“3 d2pσq, and d1pτq is the number of trian-
gles of τ , i.e., d1pτq “ ppτq ` vpτq. Note that, for any subsequence σ “ πiπjπk
of π for which ∆pσq “ 1, the pair pw1σw2, σq P E, for every w1 Ď π1...πi´1 and
w2 Ď πk`1...πn. Therefore, d2pσq “ 2n´pk´i`1q, which is the number of permuta-
tions w1σw2. Consequently,

ř

σPXpπq,|σ|“3 d2pσq “
ř

iăjăk ∆pπi, πj, πkqd2pπiπjπkq “
ř

1ďiăjăkďn 2n´pk´i`1q∆pπi, πj, πkq. Therefore, we have:

ÿ

τPXpπq

pppτq ` vpτqq “ |E| “
ÿ

1ďiăjăkďn

2n´pk´i`1q∆pπi, πj, πkq, (2)

which leads to the desired result.



Let the value b “ k ´ i ` 1 be the basis of the triangle πiπjπk, and let
∆bpπq be the number of triangles with basis b in π. Equation (1) can be rewritten as
tpπq “

řn
b“3 2n´b∆bpπq ` |Xpπq|, which shows a single triangle with a smaller ba-

sis contributes more than a single triangle with larger basis. This supports the follow-
ing conjecture, posed in [Ahmed and Snevily 2013], and also its strengthening anounced
in [Adamczak 2016], that says that, for every k P t0, . . . , tn{2uu, we have either
1 ď π2k`2 ď n{2 and n{2 ď π2k`1 ď n or 1 ď π2k`1 ď n{2 and n{2 ď π2k ď n.
Conjecture 1 (Ahmed-Snevily, 2013). If π P RCpnq, then πk`1 ą πk, πk`2 or πk`1 ă
πk, πk`2, for every k P t1, . . . , n´ 2u.

3. An Integer Linear Programming Model
In this section we present an integer linear programming model to find roller coasters of
a given size n. Its objective function is derived from Equation (1) and the main variable
x “ px1, x2, ..., xnq represents the permutation itself. We use auxiliary binary variables
pi,j,k, vi,j,k with 1 ď i ă j ă k ď n, and wi,j with 1 ď i ă j ď n, where pi,j,k (resp. vi,j,k)
indicates whether xixjxk is a peak (resp. a valley), and wi,j indicates whether xi ą xj . A
binary variable equals 1 if its property is satisfied, and 0 otherwise.

For px1, . . . , xnq to be a permutation, we must have xi ‰ xj , for every i ‰ j,
which is expressed by Equations (3b) and (3c). For xixjxk to be a triangle, xixjxk must be
either a peak, for which we have xj ą xi and xj ą xk, and can be expressed by equations
xj ě xi´np1´ pi,j,kq` 1 and xj ě xk´np1´ pi,j,kq` 1; or a valley, for which we have
xj ă xi and xj ă xk, and can be expressed by equations xj ď xk ` np1´ vi,j,kq ´ 1 and
xj ď xi ` np1´ vi,j,kq ´ 1. These constraints are denoted by PVi,j,k (see Equation (3d)).

Model 1. An Integer Programming Model for finding roller coasters.

max tpxq “
ÿ

1ďiăjăkďn

2´pk´i`1q ppi,j,k ` vi,j,kq (3a)

s.t. wi,j ` wj,i “ 1, @ i ‰ j, (3b)
xi ě xj ` npwi,j ´ 1q ` 1, @ i ‰ j, (3c)
PVi,j,k, @ i ă j ă k. (3d)

Unfortunately, we were not able to run this model for n ě 18. On the other hand,
by using Adamczak’s strengthening of Conjecture 1 as additional constraints, which are
translated to xi ě n{2 when i is even, and xi ď n{2 when i is odd, we were able to obtain
new permutations for n up to 40 (see Table 2). These new permutations improved some
of the lower bounds on tmax known so far (see Table 1). Note that if the strengthening of
Conjecture 1 holds, then these additional constraints exclude only the solutions for which
xi ď n{2 when i is even, and xi ě n{2 when i is odd, and hence do not exclude all
optimal solutions, which implies that the permutations found are indeed roller coasters,
and their respective values of t are tmax. Our experiments were written on Sagemath
[The Sage Developers 2020] and ran with the Gurobi solver [Gurobi Optimization 2021].

4. Conclusion and Future work
This paper presents an alternative and fast algorithm to calculate t, and an integer linear
programming model to find roller coasters, which provided us with new lower bounds



for tmax. We plan to explore Conjecture 1 in order to prove it or disprove it. While
our methods have frequently supported the validity of Conjecture 1, by excluding the
additional constraints, the model may be able to find a counterexample for it.

Table 1. Permutations found using Model 1.

N
14 [7, 11, 3, 13, 5, 9, 1, 14, 6, 10, 2, 12, 4, 8]
15 [7, 12, 3, 14, 5, 10, 1, 15, 6, 9, 2, 13, 4, 11, 8]
16 [8, 12, 4, 14, 2, 10, 6, 16, 1, 11, 7, 15, 3, 13, 5, 9]
17 [8, 14, 3, 15, 6, 10, 2, 17, 7, 12, 1, 16, 5, 11, 4, 13, 9]
18 [9, 14, 4, 16, 7, 11, 2, 18, 6, 13, 1, 17, 8, 12, 3, 15, 5, 10]
19 [9, 15, 5, 17, 2, 12, 8, 19, 3, 13, 6, 16, 1, 11, 7, 18, 4, 14, 10]
20 [10, 15, 5, 18, 2, 12, 8, 20, 4, 14, 7, 17, 1, 13, 9, 19, 3, 16, 6, 11]
21 [10, 17, 4, 19, 8, 13, 1, 21, 6, 15, 3, 18, 9, 12, 2, 20, 7, 14, 5, 16, 11]
22 [11, 17, 5, 20, 8, 14, 2, 22, 10, 16, 4, 19, 7, 13, 1, 21, 9, 15, 3, 18, 6, 12]
23 [11, 17, 6, 21, 3, 15, 9, 23, 1, 16, 7, 19, 4, 13, 10, 22, 2, 14, 8, 20, 5, 18, 12]
24 [12, 18, 6, 21, 3, 15, 9, 23, 1, 17, 11, 20, 5, 14, 8, 24, 2, 16, 10, 22, 4, 19, 7, 13]
25 [12, 19, 5, 16, 9, 23, 2, 18, 10, 25, 1, 14, 7, 21, 4, 17, 11, 24, 3, 15, 8, 22, 6, 20, 13]
26 [13, 20, 6, 23, 10, 16, 3, 25, 8, 18, 1, 22, 12, 15, 5, 26, 9, 19, 2, 24, 11, 17, 4, 21, 7, 14]
27 [13, 20, 7, 24, 3, 17, 11, 23, 5, 19, 9, 27, 1, 15, 12, 22, 4, 18, 8, 26, 2, 16, 10, 25, 6, 21, 14]
28 [14, 21, 7, 25, 3, 17, 11, 27, 5, 19, 9, 23, 1, 16, 13, 28, 6, 20, 10, 24, 2, 18, 12, 26, 4, 22, 8, 15]
29 [14, 23, 7, 26, 11, 18, 3, 28, 9, 20, 5, 24, 13, 16, 1, 29, 8, 21, 4, 25, 12, 17, 2, 27, 10, 19, 6, 22, 15]
30 [15, 23, 7, 27, 11, 19, 3, 29, 13, 21, 5, 25, 9, 17, 1, 30, 14, 22, 6, 26, 10, 18, 2, 28, 12, 20, 4, 24, 8, 16]
31 [15, 24, 8, 27, 11, 20, 3, 29, 13, 18, 5, 25, 9, 22, 1, 31, 14, 17, 6, 26, 10, 21, 2, 30, 12, 19, 4, 28, 7, 23, 16]
32 [16, 24, 8, 28, 4, 20, 12, 30, 2, 22, 14, 26, 6, 18, 10, 32, 1, 23, 15, 27, 7, 19, 11, 31, 3, 21, 13, 29, 5, 25, 9, 17]
33 [16, 26, 8, 29, 11, 20, 3, 31, 13, 22, 5, 27, 10, 18, 1, 33, 15, 24, 6, 28, 9, 19, 2, 32, 14, 23, 4, 30, 12, 21, 7, 25, 17]
34 [17, 26, 8, 30, 13, 21, 4, 32, 11, 23, 2, 28, 15, 19, 6, 34, 10, 25, 1, 29, 16, 20, 7, 33, 12, 24, 3, 31, 14, 22, 5, 27, 9, 18]
35 [17, 27, 9, 31, 4, 22, 14, 29, 6, 23, 12, 34, 2, 20, 16, 30, 7, 25, 10, 35, 1, 19, 15, 28, 5, 24, 11, 33, 3, 21, 13, 32, 8, 26, 18]
36 [18, 27, 9, 32, 4, 22, 14, 34, 7, 24, 12, 29, 2, 20, 16, 36, 6, 26, 11, 31, 1, 21, 17, 35, 8, 25, 13, 30, 3, 23, 15, 33, 5, 28, 10, 19]
37 [18, 29, 9, 24, 14, 34, 3, 21, 11, 31, 6, 26, 17, 36, 2, 22, 12, 32, 7, 27, 15, 37, 1, 20, 10, 30, 5, 25, 16, 35, 4, 23, 13, 33, 8, 28, 19]
38 [19, 29, 9, 34, 14, 24, 5, 36, 17, 27, 7, 31, 11, 21, 2, 38, 16, 26, 6, 33, 13, 23, 1, 37, 18, 28, 8, 32, 12, 22, 3, 35, 15, 25, 4, 30, 10, 20]
39 [19, 30, 10, 35, 14, 24, 4, 38, 17, 22, 7, 31, 11, 27, 1, 37, 16, 23, 6, 33, 13, 28, 3, 39, 18, 21, 8, 32, 12, 26, 2, 36, 15, 25, 5, 34, 9, 29, 20]
40 [20, 30, 11, 35, 5, 25, 15, 38, 2, 27, 18, 32, 7, 22, 13, 40, 3, 29, 17, 34, 9, 24, 12, 37, 1, 28, 19, 33, 8, 23, 14, 39, 4, 26, 16, 36, 6, 31, 10, 21]

Table 2. Values of t(n) obtained by ‘AS’, as in [Ahmed and Snevily 2013], and with
‘BN’, as the integer linear programming model, for n = 14,. . . ,40. Improved
lower bounds are presented with bold text.

14 15 16 17 18
AS 81350 174954 374409 798471 1700036
BN 81350 174954 374409 798783 1700036

19 20 21 22 23
AS 3596124 7588303 15970785 33596706 70310126
BN 3597020 7588303 15970785 33596706 70310126

24 25 26 27 28
AS 146867861 306492900 639129568 1327542841 2755084935
BN 146867861 306500899 639198976 1328781760 2758443963

29 30 31 32 33
AS 5720021634 11863992638 24524469439 50593221917 104565405932
BN 5720153893 11863992638 24525731250 50650675297 104569114183

34 35 36 37 38
AS 215826275292 444271587981 914139811651 1881877624386 3872524536090
BN 215844113148 444587412964 914999923559 1882036116393 3872525917922

39 40
AS 7948257224143 16292370258569
BN 7949294221494 16308000242795
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