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Abstract. We compare the behaviour of the L(h, k)-number of undirected and
oriented graphs in terms of maximum degree, highlighting differences between
the two contexts. In particular, we prove that, for every h and k, oriented graphs
with bounded degree in every block of their underlying graph (for instance, ori-
ented trees and oriented cacti) have bounded L(h, k)-number, giving an upper
bound on this number which is sharp up to a multiplicative factor 4.

1. Introduction

Given a pair of integers (h, k), with h ≥ 0 and k ≥ 1, an L(h, k)-labeling or L(h, k)-
coloring of a graph (without multiple edges or loops) G is an assignment f : V (G) →
{0, 1, . . . , t} such that, for every u,v ∈ V (G), we have |f(u)− f(v)| ≥ h, if u and v are
joined by an edge; and |f(u)− f(v)| ≥ k if there is a path of length two joining u and v.
The minimum value of t among the L(h, k) colorings of G is called the L(h, k)-number
of G, and it is denoted by λh,k(G). Note that a L(h, k)-coloring with λh,k(G) = t can use
t+1 colors (as 0 is included in the range of f ). Although this is a slightly counterintuitive
detail in the definition, we follow it for historical reasons. Also, contrarily to a good part
of the literature, we do not assume in general that h ≥ k (even though this is the most
relevant case in terms of applications). The case k = 0 is excluded since it is easy to
see that λh,0(G) = h(χ(G) − 1), where χ(G) is the usual chromatic number of G, i.e.,
L(h, 0)-labelings are essentially usual vertex colorings scaled by a constant factor.

At first, L(h, k)-labelings were introduced in [Yeh 1990] in the special case h = 2
and k = 1, and their origin traces back to the frequency assignment problem of wireless
networks introduced in [Hale 1980], where a similar mathematical model was used to
deal with the so-called Channel Assignment Problem.

The definition of L(h, k)-labelings extends naturally to oriented graphs (which are
directed graphs whose underlying graph is simple), namely, if G is an oriented graph, an
L(h, k)-labeling of G is a function f : V (G)→ {0, . . . , t} such that |f(u)−f(v)| ≥ h, if
u and v are joined by an edge; and |f(u)− f(v)| ≥ k, if there is a directed path of length
two joining u and v. The corresponding L(h, k)-number is usually denoted by

−→
λ h,k(G).

These labelings were first considered by Chang and Liaw [Chang and Liaw 2003] (for
(h, k) = (2, 1)), and in more generality in [Chang et al. 2007] and [Chen et al. 2009].

In this paper, we will compare the L(h, k)-number of undirected and oriented
graphs, and prove that, while for undirected graphs, this parameter can be estimated from

*The author is supported by FAPESP (2020/08252-2). FAPESP is the São Paulo Research Foundation.



above and from below in terms of the maximum degree of the graph, in the case of ori-
ented graphs, the relevant parameter to bound

−→
λ h,k is the maximum of the in- and out-

degrees inside each block (i.e., biconnected component, which in this paper might be a
single edge as well) of the underlying graph.

2. Undirected versus oriented graphs

For every oriented graph G, it is clear that
−→
λ h,k(G) ≤ λh,k(H), where H is the under-

lying graph of G. However, this inequality is usually far from sharp. Indeed, these two
parameters behave quite differently: for undirected graphs, there is a lower bound for λh,k
in terms of the maximum degree, namely λh,k(H) ≥ (∆(H) − 1)k, as every pair of ver-
tices in the neighborhood of a vertex of degree ∆(H) must have colors with difference at
least k (this bound can be improved to λh,k(H) ≥ h + (∆(H) − 1)k if h ≥ k/2). For
oriented graphs, on the other hand, there is no such phenomenon, since the neighborhood
of every vertex can be locally colored with two colors with difference at least k (one for
the inneighbors and the other for the outneighbors). In fact, there is no lower bound for−→
λ h,k in terms of the maximum degree: for instance, the results in [Chang et al. 2007]
imply that

−→
λ h,k(T ) ≤ h+ 3k for every oriented tree T .

Also, for an undirected graph G with maximum degree ∆, note that a greedy
coloring shows that λh,k(G) ≤ ∆(2h − 1) + (∆2 − ∆)(2k − 1). On the other hand,
the incidence graph of a projective plane shows that there are graphs G with λh,k(G) ≥
k∆(G)2 + ch,k ·∆(G), for some ch,k which depends only on h and k. This shows that the
upper bound is sharp up to a factor of 2.

Theorem 1 shows that the relevant parameter in the case of oriented graphs is
actually the maximum degree inside a block of the corresponding underlying graph. To-
gether with Theorem 2, it shows that bounds similar to the one in the paragraph above
for undirected graphs hold for an oriented graph if we replace the global maximum de-
gree by the maximum degree inside the blocks of the underlying graph. In particular, it
implies that the L(h, k)-number of oriented trees, oriented cacti and oriented graphs with
bounded number of cycles in their underlying graph is bounded from above by a constant
that depends only on h and k.

Theorem 1. Let d ≥ 1 be an integer, h, k be integers with h ≥ 0 and k ≥ 1, and let G be
an oriented graph with the following property: for every block B of its underlying graph,
the in- and outdegrees of the vertices of G[B], the subgraph of G induced by V (B), are
bounded by d. Then

−→
λ h,k(G) ≤

{
(4k − 2)d2 + (4h− 2)d, if h ≥ 1;

(4k − 2)d2, if h = 0.

Proof. We will prove the result only in the case h ≥ 1, as the other case is analogous. We
may assume that the underlying graph of G, which we call H , is connected (as the proof
and the result applies in each component).

Put M = max{h, k}. The proof goes by induction on the number of blocks of H .
If H has only one block (that is, H is biconnected), it is possible to color the vertices of G
greedily using at most (4k− 2)d2 + (4h− 2)d+ 1 colors. In fact, every vertex v of H has



at most 2d neighbors, each of which forbids at most 2h− 1 colors for v, and at most 2d2

non-neighbors joined to v by a path of length two, each of which forbids at most 2k − 1
colors for v.

Suppose now that H contains at least two blocks. Let v be the neighbor of a
terminal vertex in a longest path in the block-cut tree of H , which is the tree whose
vertices are the blocks and the cutvertices of H , and where two vertices are joined if
they correspond to a cutvertex and a block containing it. The vertex v has the following
property: it is a cut vertex of H , and at most one block of H that contains v is not a leaf
block (i.e., contain another cut vertex of H). Let B1, . . . , Bt be the leaf blocks of H that
contain v. By induction hypothesis, the oriented graph G′ = G −

⋃t
i=1(V (Bi)\{v}) has

an L(h, k)-labeling with at most (4k − 2)d2 + (4h− 2)d+ 1 colors. We are left with the
vertices of

⋃t
i=1(V (Bi)\{v}) to color to extend this coloring to a L(h, k)-labeling of G.

Let Xi (resp. Yi) denote the set of vertices in Bi that points to (resp. from) v in
G, and put X =

⋃t
i=1Xi and Y =

⋃t
i=1 Yi. The condition on the degrees inside a block

implies that |Xi| ≤ d and |Yi| ≤ d for every 1 ≤ i ≤ t. Furthermore, for every i 6= j,
there is no edge joining Xi and Xj , Yi and Yj , or Xi and Yj . There are two cases:

Case 1: d ≥ 2 or h ≥ k. The vertex v has at most 2d neighbors in G′,
each of which forbids at most 2k − 1 colors for a vertex in A ∪ B, and v itself for-
bids at most 2M − 1 colors for a vertex in A ∪ B. This means that we have at
least (4k − 2)d2 + (4h − 2)d + 1 − 2d(2k − 1) − (2h − 1) free colors to use in the
vertices of X ∪ Y . A straightforward calculation shows that this number is at least
C = (2d − 1)M + 1 whenever d ≥ 2 or h ≥ k. In these cases, we can use these
free colors to color X ∪ Y . Indeed, suppose c1 < · · · < c(2d−1)M+1 are C of the free
colors. We can take the d colors c1, cM+1, c2M+1, · · · , c(d−1)M+1 to use in X and the d
colors cdM+1, c(d+1)M+1, c(d+2)M+1, · · · , c(2d−1)M+1 to use in Y : to color X , we need at
most d colors (since |Xi| ≤ d, and hence inside a component of Xi and Yi, we may assign
the colors to vertices without repetition) which are at least M apart from each other, and
the same for Y . Moreover, the choice of colors above guarantees that every color used in
X and in Y are at leastM distant from each other. Finally, we have to color the vertices of⋃t

i=1(V (Bi)\{v}) which are not neighbors of v. These vertices can be colored greedily
as in the base case of the induction, since all the neighbors and second-neighbors of such
vertices lie inside a block, wherein the maximum degree is at most d.

Case 2: d = 1 and k > h. In this case, the induction step consists of a more subtle
argument. As before, assume that G′ is colored with at most (4k−2)d2 +(4h−2)d+1 =
4(k + h) − 3 colors (the integers from 0 to 4h + 4k − 4), and call such a coloring c. As
d = 1, v has at most one outneighbor x and one inneighbor y in G′, and |Xi| ≤ 1 and
|Yi| ≤ 1 for every 1 ≤ i ≤ t. The vertex v forbids an interval Sv of at most 2k − 1 colors
to use in X ∪ Y , and the vertex x (resp. y) forbids an interval Sx (resp. Sy) of at most
2k− 1 colors to use in X (resp. Y ). Our goal is to find two colors, say α and β, such that
α /∈ Sx ∪ Sv, β /∈ Sy ∪ Sv and |α− β| ≥ k, so we may assign α to the vertices in X , β to
the vertices in Y and complete the induction step as before.

Assume first that {0, 4h+4k−2}∩Sv = ∅. In this case, each of 0, 4h+4k−2 do
not belong to one of Sx, Sy (as |Sx|, |Sy| ≤ 2k−1 < 4k+4h−2). Also, it is clear that Sx

and Sy cannot both contain 0 (or 4h+ 4k− 2), for if Sx and Sy both contain one of these,



then either 0 ≤ c(x), c(y) ≤ k− 1 or 4h+ 4k− 2− (k− 1) ≤ c(x), c(y) ≤ 4h+ 4k− 2,
which contradicts |c(x) − c(y)| ≥ k. This implies that there is a choice of α and β with
{α, β} = {0, 4h+ 4k − 2}.

On the other hand, if, say, 0 ∈ Sv (the other case is symmetric), we know that
c(v) ≤ k − 1, and hence Sv ∩ {2k − 1, 2k, . . . , 4h + 4k − 2} = ∅. By the observation
above, 4h+4k−2 does not belong to one of Sx, Sy. First, assume that 4h+4k−2 belongs
to one of Sx, Sy, say, 4h + 4k − 2 ∈ Sx. Then, 4h + 4k − 2 /∈ Sy. But 2k − 1 /∈ Sx,
since (4h + 4k − 2) − (2k − 1) = 2k − 1 + 4h > |Sx| − 1, and then we can take
{α, β} = {2k − 1, 4h + 4k − 2}. Finally, if 4h + 4k − 2 /∈ Sx ∪ Sy, then we claim that
either 2k− 1 or 3k− 2 does not belong to either Sx or Sy. In fact, if both numbers belong
to both sets, then the interval {2k − 1, 3k − 2} of size k would be contained in Sx ∩ Sy.
As |Sx|, |Sy| ≤ 2k− 1, this implies that c(x), c(y) ∈ {2k− 1, 3k− 2}, which contradicts
|c(x)− c(y)| ≥ k. This implies that we can take either {α, β} = {2k − 1, 4h + 4k − 2}
or {α, β} = {3k − 2, 4h+ 4k − 2}.

This theorem extends a result of [Colucci and Győri 2021] for the case (h, k) =
(2, 1). In that paper, there is a construction that shows that the upper bound of Theorem 1
is sharp up to a multiplicative constant as well.
Theorem 2. For every integers h ≥ 0 and k ≥ 1, there are oriented graphs G whose
underlying graphs are biconnected, all in- and outdegrees bounded by d, and

−→
λ h,k(G) ≥

kd2 + ch,k · d for some ch,k which depends only on h and k.

3. Concluding remarks
In this paper, we proved that, for every pair of integers h ≥ 0, k ≥ 1, the L(h, k)-
number of oriented graphs with bounded degree in every block of their underlying graph
is bounded, which is a remarkable contrast with the L(h, k)-number of undirected graphs.
On the other hand, in many cases, the upper bound given by Theorem 1 is not the exact
value of the L(h, k)-number of the corresponding oriented graph. It would be interesting
to determine the precise value, or at least better bounds, of this parameter in some classes
of oriented graphs, as in [Chang et al. 2007] and [Chen et al. 2009].
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