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Abstract. Given a graph G and a proper k-coloring f of G, a b-vertex in f
is a vertex that is adjacent to every color class but its own. If every vertex
is a b-vertex, then f is a fall k-coloring; and G has a subfall k-coloring if
there is an induced H ⊆ G such that H has a fall k-coloring. The subfall
chromatic number of G is the largest positive integer ψfs(G) such that G has
a subfall ψfs(G)-coloring. We prove that deciding whether a graph G has a
subfall k-coloring is NP-complete for k ≥ 4, and characterize graphs having
a subfall 3-coloring. This answers a question posed by Dunbar et al. (2000)
in their seminal paper. We also prove polinomiality for chordal graphs and
cographs, and present a comparison with other known coloring metrics based
on heuristics.

1. Introduction
Given a simple graph G, a function f : V (G) → {1, · · · , k} is a proper k-coloring of
G if f(u) 6= f(v) for every uv ∈ E(G); from now on, we call a proper coloring simply
coloring. A classical problem of graph theory is to investigate the least value k such that
a graph G has a k-coloring; this value is denoted by χ(G) and is called chromatic num-
ber. This is one of the hardest problems in Graph Theory, being NP-complete to decide
whether a graphG is 3-colorable even ifG is a 4-regular planar graph [Dailey 1980]. This
is why it is natural to investigate colorings based on heuristics.

Given a graph G, a coloring f of G and a vertex v ∈ V (G), we say that v is a
b-vertex in f if it is adjacent to at least one vertex of each color class different from its
own. Also, f is a b-coloring if every color class has at least one b-vertex, and it is a fall
coloring if every vertex is a b-vertex. The maximum value k such that G has a b-coloring
(fall coloring) using k colors is denoted by b(G) (ψf (G)), and is called the b-chromatic
(fall chromatic) number of G. We say that G has a subfall k-coloring if there exists an
induced subgraph H ⊆ G such that H has a fall k-coloring; the subfall chromatic number
of G, denoted by ψfs(G), is the largest value k such that G has a subfall k-coloring.

Fall and subfall colorings were introduced in [Dunbar et al. 2000], where among
other things, they prove that the fall k-coloring problem is NP-complete. They then ask
about the complexity of the subfall k-coloring and whether the inequality ψfs(G) ≤ b(G)
holds. In this paper, we answer both questions. First, we prove that deciding whether
a graph G has a subfall k-coloring is NP-complete for k ≥ 4, and give a structural
characterization of graphs having a subfall 3-coloring. More specifically, we prove that
G has a subfall 3-coloring if and only if G contains an induced cycle of length mul-
tiple of 3. We mention that a related problem, the complexity of finding an induced



odd cycle, remained open for 14 years, and was only recently shown to be polyno-
mial [Chudnovsky et al. 2020]. This hints towards polinomiality of subfall 3-coloring,
which contrasts with fall 3-coloring, known to be NP-complete [Dunbar et al. 2000].
Regarding inequality ψfs(G) ≤ b(G), we answer their question in the negative, and
also compare ψfs(G) with other coloring parameters based on heuristics. Finally, we
prove continuity of subfall colorings, i.e., that G has a subfall k-coloring for every
k ∈ {1, · · · , ψfs(G)}, and we present a table comparing the complexity of the many
parameters on chordal graphs, cographs and bipartite graphs, also filling two of those
entries for subfall colorings, namely for chordal and cographs.

2. Complexity of subfall k-coloring

In this section, we present our complexity results. Note that every graph with non-empty
edge set has a subfall coloring with 2 colors. So, we study the complexity of subfall
k-coloring for k ≥ 3. By applying a result in [Lauri and Mitillos 2019], we first obtain:
Theorem 1. Deciding whether a graph G has a subfall k-coloring is NP-complete for
every fixed k ≥ 4.

For k = 3, we could not settle the complexity of the problem, but we present the
following characterization, that might help in its solution:

Theorem 2. A simple graphG has subfall 3-coloring if and only if it contains a cycle C3k

as induced subgraph, for some positive integer k.

Given its NP-completeness for general graphs, it is natural to investigate the com-
plexity of the problem restricted to specific graph classes. In this section, we investigate
chordal graphs and cographs. For that, we need the concepts of perfect graphs and fall
perfect graphs, the latter introduced in [Silva 2019]. The fall spectrum of G is the set
of values k such that G is fall k-colorable; it is denoted by F(G). A graph G is perfect
if, for every induced subgraph H ⊆ G, we have χ(H) = ω(H); and is fall perfect if,
for every induced subgraph H ⊆ G, we have F(H) ⊆ {χ(H)}. In [Silva 2019], the
author proves that chordal graphs and cographs are fall perfect. Furthermore, chordal
graphs and cographs are both hereditary subclasses of perfect graphs, i.e., if a graph G
is a chordal graph or is a cograph, then any induced subgraph of G is also perfect. The
aforementioned result and the following one give us that computing ψfs(G) is polynomial
on chordal graphs and cographs, since computing ω(G) in these classes can be done in
polynomial time.

Theorem 3. Let G be a class of graphs which are perfect and fall perfect. Then ψfs(G) =
ω(G), for every G ∈ G.

3. Continuity and other parameters

In this section, we show one of the most important differences between fall coloring and
subfall coloring: the continuity of the latter. In fact, there are graphs that do not even
admit a fall coloring, which does not happen for subfall colorings. Moreover, there are
graphs and values k, m and n, with k < m < n, that admit fall k-coloring and fall n-
coloring, but do not admit fall m-coloring, which shows the discontinuity of fall coloring
of graphs. See Figure 1 for an example.
Proposition 4. LetG be a graph; thenG has a subfall k-coloring, for every k ∈ [ψfs(G)].



Figure 1. Graph that has fall 2-coloring and fall 4-coloring, but no fall 3-coloring.

We now give some further definitions. Let f be a coloring of G. We say that v is
a Grundy vertex of color i in f if f(v) = i and v is adjacent to at least one vertex in color
class j for each 1 ≤ j < i. Additionally, f is a Grundy k-coloring if it is a k-coloring
and each vertex v ∈ V (G) is a Grundy vertex; the maximum value k such that G has a
Grundy k-coloring is called Grundy number and denoted by Γ(G). A natural concept of
graph theory is to investigate possible relations between graph parameters. It is folklore
knowledge that ψf (G) ≤ b(G), that ψf (G) ≤ Γ(G), and that b(G) and Γ(G) are not
related. Below, we analyze the relation between each of the aforementioned parameters
and ψfs(G) adding the inequality ψf (G) ≤ ψfs(G), established in [Dunbar et al. 2000].
Proposition 5. The following statements are true:

a. There exists G1 such that ψfs(G1) < χ(G1). Additionally, for every positive
integer k, there exists G2 such that ψfs(G2)− χ(G2) = k;

b. For each positive integer k, there exist graphs G1 and G2 such that: b(G1) −
ψfs(G1) = ψfs(G2)− b(G2) = k;

c. For every graph G, we have ψf (G) ≤ ψfs(G) ≤ Γ(G).

In order to establish arbitrarily high χ(G) − ψfs(G), it is natural to look for a
graph G with arbitrarily large χ(G) and such that ψfs(G) = 2. By Theorem 2, such a
graph must be C3n-free for every n. This seems to be very challenging since a C3-free
G with arbitrarily large χ(G) was not known until 1954 when the first construction was
given by [Descartes 1954], and constructions forcing high girth appeared only around 10
years after Erdős presented his groundbreaking probabilistic proof in 1959.

4. Final Remarks
As shown in the previous sections, the NP-completeness of subfall coloring leads us to
investigate the complexity for restricted graph classes; we have chosen to investigate bi-
partite graphs, chordal graphs and cographs, which are between the most investigated
graph classes. It is also natural to be interested in comparing the complexity of the pre-
viously defined problems on these classes. Table 1 summarizes the known results. The
problem marked with “?” is still open.

bipartite chordal cograph
fall coloring NP-complete NP-complete Polynomial

subfall coloring ? Polynomial* Polynomial*
b-coloring NP-complete NP-complete Polynomial

Grundy NP-complete NP-complete Polynomial

Table 1. The entries marked with * follow from Theorem 3.



The proof of NP-completeness of fall colorings on bipartite graphs is given
in [Dunbar et al. 2000], while in [Silva 2019] the author proves NP-completeness
for chordal graphs and polynomiality for cographs. As for b-coloring, the NP-
completeness for bipartite and chordal graphs were proved in [Irving and Manlove 1999]
and [Havet et al. 2012] respectively, while polynomiality for cographs is given
in [Bonomo et al. 2009]. Finally, Grundy coloring is NP-complete on bipartite graphs
[Havet and Rocha 2013] and on chordal graphs [Sampaio 2012], and polynomial on
cographs [Araujo and Linhares Sales 2012]. We then notice that all of these problems
behave similarly, with a deviation only for subfall coloring of chordal graphs.
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