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Abstract. Let k be a positive integer. A partial k-coloring of a digraph D is a
set C of k disjoint stable sets and has weight defined as Y cc |C|. An optimal
k-coloring is a k-coloring of maximum weight. A path partition of a digraph D
is a set P of disjoint paths of D that covers its vertex set and has k-norm defined
as Y pep min{|P|, k}. A path partition P is k-optimal if it has minimum k-
norm. A digraph D is matching-spine if its vertex set can be partitioned into
sets X and Y, such that D|X| has a Hamilton path and the arc set of D]Y|
is a matching. Linial (1981) conjectured that the k-norm of a k-optimal path
partition of a digraph is at most the weight of an optimal partial k-coloring. We
present some partial results on this conjecture for matching-spine digraphs.

1. Introduction

For a digraph D, let V(D) denote its vertex set and let A(D) denote its arc set. Given
an arc a = (u,v) € A(D), we say that u and v are adjacent and also that u is the tail
and v is the head of a. The set of neighbors of a vertex u in D, denoted by N (u), is the
set of vertices that are adjacent to u. In this paper, we consider only digraphs without
loops and parallel arcs. A path is a sequence of distinct vertices P = (v, vs, ..., vg) such
that (v;,v;41) € A(D) forevery 1 < i < ¢ — 1. We denote by V' (P) the set of vertices
of P and by ter(P) the vertex v,. We define the order of a path P, denoted by |P|, as
its number of vertices. We denote by Pv; the subpath (v, v, ..., v;) of P. A Hamilton
path in D is a path containing every vertex in V(D). A cycle is a sequence of vertices
C = (vo,v1,...,v,) with £ > 2 such that (v;,v;41) € A(D) forevery 0 < i < ¢ —1,
and all vertices are distinct except vy and v, which coincide. We say that a digraph D is
acyclic if it does not contain a cycle. A digraph D is transitive if whenever (u,v) € A(D)
and (v, w) € A(D), then (u,w) € A(D) as well.

A path partition P of a digraph D is a set of disjoint paths that cover V(D). A path
partition P of D is optimal if it has minimum cardinality, and we denote its cardinality by
7(D). Given a positive integer k, the k-norm of a path partition P of D, denoted by |P|y,
is defined as Y_pcp min{|P|, k}. A path partition of D with minimum k-norm is called
k-optimal, and we denote its k-norm by 7 (D). Note that 7(D) = m;(D).

A stable set S of a digraph D is a subset of pairwise non-adjacent vertices. We
denote by «(D) the cardinality of a maximum stable set of D. Given a positive integer k,
a partial k-coloring C of D is a set of k (possibly empty) disjoint stable sets. The weight
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of a partial k-coloring C, denoted by ||C||, is defined as > ¢ |C|. A partial k-coloring
C is optimal if it has maximum weight, and we denote its weight by ay (D). Note that
a(D) = ay(D).

[Dilworth 1950] proved that the equality 7(D) = «(D) holds when D is a transi-
tive acyclic digraph. [Gallai and Milgram 1960] generalized Dilworth’s Theorem to arbi-
trary digraphs by relaxing the equality and establishing that w(D) < «(D) for every di-
graph D. [Greene and Kleitman 1976] generalized Dilworth’s Theorem in a different way
by showing that 7 (D) = «ay (D) for every transitive acyclic digraph D and every positive
integer k. [Linial 1981] conjectured that Greene-Kleitman’s Theorem can be generalized
to arbitrary digraphs by relaxing the equality in the same way that Gallai-Milgram’s result
extends Dilworth’s Theorem.

Conjecture 1 (Linial’s Conjecture). Inequality m(D) < ay(D) holds for every digraph
D and every positive integer k.

Some particular cases of Conjecture 1 are solved such as £ = 1 (Gallai-Milgram’s
Theorem itself) and £ = 2 [Berger and Hartman 2008]. It also holds for some particu-
lar classes of digraphs ([Linial 1981, Berge 1982]). The following two recent results on
Linial’s Conjecture are relevant to this paper. A digraph D is arc-spine if there is a parti-
tion { X, Y} of V(D) such that D[ X] has a Hamilton path and D[Y’] contains at most one
arc; in particular, when D[Y] is a stable set, we say D is spine. [Sambinelli et al. 2017]
proved Linial’s Conjecture for spine digraphs and [Yoshimura et al. 2019] extended such
result for arc-spine digraphs. This paper is a direct follow-up of the latter.

A digraph D is matching-spine if there is a partition { X, Y} of V(D) such that
D|[X] has a Hamilton path and the arc set of D[Y] is a matching; clearly a superclass of
arc-spine digraphs. We use the notation D[X, Y] to indicate a partition with this property.
In this paper we present partial results on Conjecture 1 for matching-spine digraphs.

2. Main results

Let D[X, Y] be a matching-spine digraph, let P be a Hamilton path of D[X] and let £ > 2
be an integer. The canonical path partition P of D is the path partition consisting of P
together with all maximal paths of D[Y]; clearly 7, (D) < |P|; = min{|X]|, k} + |Y|.
Let Y and Y~ be the subsets of vertices in Y~ which are, respectively, tail and head of
some arc in D[Y] and let Y° = Y \ (YT UY ™). A canonical partial k-coloring C is a
partial k-coloring consisting of stable sets Y° U Y™, Y* and min{k — 2, | X|} singletons
of X; clearly o (D) > ||C]| = |Y| + min{k — 2, | X|}. Note that there is a gap of two to
reach our desired inequality.

A matching-spine digraph D[X, Y] is k-tight if |X| > k and for every S C X,
with |S| = k, one of the following holds: (1) there is a vertex y € Y such that S C N(y),
or (2) there is an arc (y*,y~) € A(D[Y]) and there is a vertex s € S such that S — {s} C
Nyt)N Ny )and s € N(y*) U N(y~). An alternative way to state condition (2) is
the following: s is the unique non-neighbor of y™ and y~ in S. When D[X,Y] is not
k-tight it is k-loose. The motivation for splitting the class of matching spine digraphs into
k-loose and k-tight is the fact that it is easy to obtain a partial k-coloring with weight
min{|X|, k} + |Y| for the k-loose ones. This implies the following.

Proposition 2. Let k > 2 be an integer and let D|X,Y] be a k-loose matching-spine
digraph. Then m,(D) < ay (D).



Henceforth we assume that D is k-tight. Let P = (x4, ..., x;) be a Hamilton path
of D[X]. We say that P has a zigzag if one of the structures illustrated in Figure 1 exists.
In Figure 1, y denotes some vertex in Y, (y*,y~) some arc in D[Y] and 7 is some index
such that 1 < ¢ < £. If P has a zigzag there is a path P’ of order | X'| + 1 and it is easy to
show that 7,(D) < |Y| + k — 1. If P has no zigzag, then we say that P is zigzag-free.
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Figure 1. Types of zigzags of a path P.

Our main contribution in this paper is to show that 7 (D) < |Y| + k — 1 for every
k-tight matching-spine digraph D (Theorem 4). To do so, we need Lemma 3. We present
just a sketch of the proof for the sake of conciseness.

Lemma 3. Let k be a positive integer, let D[X,Y] be a k-tight matching-spine digraph
and let P = (x1,29,...,%) be a zigzag-free Hamilton path of D[X|. Then, there are
paths Py and P, such that: 1) V(P) NV (Py) =0, (i) |P| + |P2] = | X|+k+ 1, and
(iii) ter(Py) U ter(Py) = {xy, y}, for some vertexy € Y.

Sketch of the proof. We may assume that Y is not a stable set, otherwise the result follows
by [Sambinelli et al. 2017, Lemma 3]. The proof is by induction on k. The base case is
k € {1,2}. When k = 1 take P, = P and P, as some arc in D[Y'| and the result follows.
Surprisingly, the case £ = 2 is the longest part of the proof, requiring the analysis of
many cases and is omitted. In the inductive step, we choose a vertex x; € X such that
(xi,y;) € A(D), for some y; € Y, and 7 is maximum with this property. Since P is
zigzag-free, z;,q exists and z; 11 & N(y;). Let Y = N(z;11) NY. By the choice of
i, it follows that (y/,z;11) € A(D), for every vertex 4/ € Y’'. Let P = Puz; and let
X' = V(P'). We consider two cases. In case 1, we assume that there is no y € Yt such
that (x;,y) € A(D). Let Y be the subset of vertices in Y+ which have no neighbor in
Y. Let D' = D|IX"UY’UY"]. We can prove that D' is a (k — 1)-tight matching-spine
digraph and P’ is zigzag-free. In case 2, we assume that there is some y € Y such that
(z;,y) € A(D). In this case we define Y as follows. A vertex y* € Y+ belongs to Y
if there is an arc (y™,y~) € A(D[Y]) such that y*,y~ € N(z;,2) and y~ & Y. Let
D' = D[X"UY’'UY"]. We can prove that D’ is a (k — 2)-tight matching-spine digraph
and P’ is zigzag-free. In either case, we may apply the induction hypothesis to D’ and P’
to obtain P and Pj satisfying conditions (i)-(iii). We can extend P, and Pj to paths P,
and P, of D satisfying conditions (1)-(iii) as desired. ]

Theorem 4. Let k > 2 be an integer and let D[ X, Y| be a k-tight matching-spine digraph.
Then, mp(D) < |Y|+ k — 1.

Proof. Let P be a Hamilton path of D[X]. If P has a zigzag, then m(D) < |Y|+ k — 1
and the result follows. So, we can assume that P is zigzag-free. By Lemma 3, there are
paths P, and P, such that |Py| + || = | X| + k + 1. Let P be a path partition consisting
of P;, P, and all trivial paths in V(D) — (V(P,) UV (P,)). Then, |P|x = min{|Py|, k} +
min{| R, k} +|V(D)|—|P| = |P| < k+E+|X[+|Y|=(|X|+k+1) = |YV|+k—-1. O



By Theorem 4, m(D) < |Y| + k — 1 for every k-tight matching-spine digraph
D. Since ai(D) > |Y| + k — 2, we now have a gap of one to reach the inequality of
Linial’s Conjecture. In an attempt to close this gap, we introduce a subclass of k-tight
matching-spine digraphs. A matching-spine digraph D is k-strongly-tight if X is a clique
of size at least k and for every T' C X of size k — 1 there is an arc (y™,y~) € A(D[Y])
such that 7 C (N(y") N N(y~)). We can show that if D is a matching-spine digraph
which is not k-strongly-tight, then ay (D) > |Y| + min{k — 1, |X|}, which leads to the
following theorem.

Theorem 5. Let k > 2 be an integer and let D[ X, Y| be a matching-spine digraph which
is not k-strongly-tight. Then, m(D) < ax(D).

3. Conclusion

We have proved Linial’s Conjecture for matching-spine digraphs which are not k-
strongly-tight (Theorems 4 and 5). This result relies on Lemma 3, whose proof is non-
trivial and is the main contribution of this paper. Only the proof for k-strongly-tight
matching-spine digraphs is missing in order to settle Linial’s Conjecture for matching
spine digraphs. We believe that inequality m(D) < |Y| + k£ — 2 holds for every k-
strongly-tight matching-spine digraph. We have already proved the result for some cases
that support this claim: for &k = 2 and for | X| = k + 1.
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