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Abstract. Let k be a positive integer. A partial k-coloring of a digraph D is a
set C of k disjoint stable sets and has weight defined as

∑
C∈C |C|. An optimal

k-coloring is a k-coloring of maximum weight. A path partition of a digraph D
is a set P of disjoint paths ofD that covers its vertex set and has k-norm defined
as

∑
P∈P min{|P |, k}. A path partition P is k-optimal if it has minimum k-

norm. A digraph D is matching-spine if its vertex set can be partitioned into
sets X and Y , such that D[X] has a Hamilton path and the arc set of D[Y ]
is a matching. Linial (1981) conjectured that the k-norm of a k-optimal path
partition of a digraph is at most the weight of an optimal partial k-coloring. We
present some partial results on this conjecture for matching-spine digraphs.

1. Introduction
For a digraph D, let V (D) denote its vertex set and let A(D) denote its arc set. Given
an arc a = (u, v) ∈ A(D), we say that u and v are adjacent and also that u is the tail
and v is the head of a. The set of neighbors of a vertex u in D, denoted by N(u), is the
set of vertices that are adjacent to u. In this paper, we consider only digraphs without
loops and parallel arcs. A path is a sequence of distinct vertices P = (v1, v2, . . . , v`) such
that (vi, vi+1) ∈ A(D) for every 1 ≤ i ≤ ` − 1. We denote by V (P ) the set of vertices
of P and by ter(P ) the vertex v`. We define the order of a path P , denoted by |P |, as
its number of vertices. We denote by Pvi the subpath (v1, v2, . . . , vi) of P . A Hamilton
path in D is a path containing every vertex in V (D). A cycle is a sequence of vertices
C = (v0, v1, . . . , v`) with ` ≥ 2 such that (vi, vi+1) ∈ A(D) for every 0 ≤ i ≤ ` − 1,
and all vertices are distinct except v0 and v` which coincide. We say that a digraph D is
acyclic if it does not contain a cycle. A digraphD is transitive if whenever (u, v) ∈ A(D)
and (v, w) ∈ A(D), then (u,w) ∈ A(D) as well.

A path partitionP of a digraphD is a set of disjoint paths that cover V (D). A path
partition P of D is optimal if it has minimum cardinality, and we denote its cardinality by
π(D). Given a positive integer k, the k-norm of a path partition P of D, denoted by |P|k,
is defined as

∑
P∈P min{|P |, k}. A path partition of D with minimum k-norm is called

k-optimal, and we denote its k-norm by πk(D). Note that π(D) = π1(D).

A stable set S of a digraph D is a subset of pairwise non-adjacent vertices. We
denote by α(D) the cardinality of a maximum stable set of D. Given a positive integer k,
a partial k-coloring C of D is a set of k (possibly empty) disjoint stable sets. The weight
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of a partial k-coloring C, denoted by ||C||, is defined as
∑

C∈C |C|. A partial k-coloring
C is optimal if it has maximum weight, and we denote its weight by αk(D). Note that
α(D) = α1(D).

[Dilworth 1950] proved that the equality π(D) = α(D) holds when D is a transi-
tive acyclic digraph. [Gallai and Milgram 1960] generalized Dilworth’s Theorem to arbi-
trary digraphs by relaxing the equality and establishing that π(D) ≤ α(D) for every di-
graphD. [Greene and Kleitman 1976] generalized Dilworth’s Theorem in a different way
by showing that πk(D) = αk(D) for every transitive acyclic digraphD and every positive
integer k. [Linial 1981] conjectured that Greene-Kleitman’s Theorem can be generalized
to arbitrary digraphs by relaxing the equality in the same way that Gallai-Milgram’s result
extends Dilworth’s Theorem.
Conjecture 1 (Linial’s Conjecture). Inequality πk(D) ≤ αk(D) holds for every digraph
D and every positive integer k.

Some particular cases of Conjecture 1 are solved such as k = 1 (Gallai-Milgram’s
Theorem itself) and k = 2 [Berger and Hartman 2008]. It also holds for some particu-
lar classes of digraphs ([Linial 1981, Berge 1982]). The following two recent results on
Linial’s Conjecture are relevant to this paper. A digraph D is arc-spine if there is a parti-
tion {X, Y } of V (D) such that D[X] has a Hamilton path and D[Y ] contains at most one
arc; in particular, when D[Y ] is a stable set, we say D is spine. [Sambinelli et al. 2017]
proved Linial’s Conjecture for spine digraphs and [Yoshimura et al. 2019] extended such
result for arc-spine digraphs. This paper is a direct follow-up of the latter.

A digraph D is matching-spine if there is a partition {X, Y } of V (D) such that
D[X] has a Hamilton path and the arc set of D[Y ] is a matching; clearly a superclass of
arc-spine digraphs. We use the notation D[X, Y ] to indicate a partition with this property.
In this paper we present partial results on Conjecture 1 for matching-spine digraphs.

2. Main results
LetD[X, Y ] be a matching-spine digraph, let P be a Hamilton path ofD[X] and let k ≥ 2
be an integer. The canonical path partition P of D is the path partition consisting of P
together with all maximal paths of D[Y ]; clearly πk(D) ≤ |P|k = min{|X|, k} + |Y |.
Let Y + and Y − be the subsets of vertices in Y which are, respectively, tail and head of
some arc in D[Y ] and let Y 0 = Y \ (Y + ∪ Y −). A canonical partial k-coloring C is a
partial k-coloring consisting of stable sets Y 0 ∪ Y −, Y + and min{k − 2, |X|} singletons
of X; clearly αk(D) ≥ ||C|| = |Y |+min{k − 2, |X|}. Note that there is a gap of two to
reach our desired inequality.

A matching-spine digraph D[X, Y ] is k-tight if |X| ≥ k and for every S ⊆ X ,
with |S| = k, one of the following holds: (1) there is a vertex y ∈ Y such that S ⊆ N(y),
or (2) there is an arc (y+, y−) ∈ A(D[Y ]) and there is a vertex s ∈ S such that S−{s} ⊆
N(y+) ∩ N(y−) and s 6∈ N(y+) ∪ N(y−). An alternative way to state condition (2) is
the following: s is the unique non-neighbor of y+ and y− in S. When D[X, Y ] is not
k-tight it is k-loose. The motivation for splitting the class of matching spine digraphs into
k-loose and k-tight is the fact that it is easy to obtain a partial k-coloring with weight
min{|X|, k}+ |Y | for the k-loose ones. This implies the following.
Proposition 2. Let k ≥ 2 be an integer and let D[X, Y ] be a k-loose matching-spine
digraph. Then πk(D) ≤ αk(D).



Henceforth we assume that D is k-tight. Let P = (x1, . . . , x`) be a Hamilton path
of D[X]. We say that P has a zigzag if one of the structures illustrated in Figure 1 exists.
In Figure 1, y denotes some vertex in Y , (y+, y−) some arc in D[Y ] and i is some index
such that 1 ≤ i < `. If P has a zigzag there is a path P ′ of order |X|+ 1 and it is easy to
show that πk(D) ≤ |Y |+ k − 1. If P has no zigzag, then we say that P is zigzag-free.
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Figure 1. Types of zigzags of a path P .

Our main contribution in this paper is to show that πk(D) ≤ |Y |+ k− 1 for every
k-tight matching-spine digraph D (Theorem 4). To do so, we need Lemma 3. We present
just a sketch of the proof for the sake of conciseness.

Lemma 3. Let k be a positive integer, let D[X, Y ] be a k-tight matching-spine digraph
and let P = (x1, x2, . . . , x`) be a zigzag-free Hamilton path of D[X]. Then, there are
paths P1 and P2 such that: (i) V (P1) ∩ V (P2) = ∅, (ii) |P1| + |P2| = |X| + k + 1, and
(iii) ter(P1) ∪ ter(P2) = {x`, y}, for some vertex y ∈ Y .

Sketch of the proof. We may assume that Y is not a stable set, otherwise the result follows
by [Sambinelli et al. 2017, Lemma 3]. The proof is by induction on k. The base case is
k ∈ {1, 2}. When k = 1 take P1 = P and P2 as some arc in D[Y ] and the result follows.
Surprisingly, the case k = 2 is the longest part of the proof, requiring the analysis of
many cases and is omitted. In the inductive step, we choose a vertex xi ∈ X such that
(xi, yi) ∈ A(D), for some yi ∈ Y , and i is maximum with this property. Since P is
zigzag-free, xi+1 exists and xi+1 6∈ N(yi). Let Y ′ = N(xi+1) ∩ Y . By the choice of
i, it follows that (y′, xi+1) ∈ A(D), for every vertex y′ ∈ Y ′. Let P ′ = Pxi and let
X ′ = V (P ′). We consider two cases. In case 1, we assume that there is no y ∈ Y + such
that (xi, y) ∈ A(D). Let Y ′′ be the subset of vertices in Y + which have no neighbor in
Y ′. Let D′ = D[X ′ ∪ Y ′ ∪ Y ′′]. We can prove that D′ is a (k − 1)-tight matching-spine
digraph and P ′ is zigzag-free. In case 2, we assume that there is some y ∈ Y + such that
(xi, y) ∈ A(D). In this case we define Y ′′ as follows. A vertex y+ ∈ Y + belongs to Y ′′

if there is an arc (y+, y−) ∈ A(D[Y ]) such that y+, y− ∈ N(xi+2) and y− 6∈ Y ′. Let
D′ = D[X ′ ∪ Y ′ ∪ Y ′′]. We can prove that D′ is a (k − 2)-tight matching-spine digraph
and P ′ is zigzag-free. In either case, we may apply the induction hypothesis to D′ and P ′

to obtain P ′1 and P ′2 satisfying conditions (i)-(iii). We can extend P ′1 and P ′2 to paths P1

and P2 of D satisfying conditions (i)-(iii) as desired.

Theorem 4. Let k ≥ 2 be an integer and letD[X, Y ] be a k-tight matching-spine digraph.
Then, πk(D) ≤ |Y |+ k − 1.

Proof. Let P be a Hamilton path of D[X]. If P has a zigzag, then πk(D) ≤ |Y | + k − 1
and the result follows. So, we can assume that P is zigzag-free. By Lemma 3, there are
paths P1 and P2 such that |P1|+ |P2| = |X|+ k + 1. Let P be a path partition consisting
of P1, P2 and all trivial paths in V (D)− (V (P1)∪ V (P2)). Then, |P|k = min{|P1|, k}+
min{|P2|, k}+|V (D)|−|P1|−|P2| ≤ k+k+|X|+|Y |−(|X|+k+1) = |Y |+k−1.



By Theorem 4, πk(D) ≤ |Y | + k − 1 for every k-tight matching-spine digraph
D. Since αk(D) ≥ |Y | + k − 2, we now have a gap of one to reach the inequality of
Linial’s Conjecture. In an attempt to close this gap, we introduce a subclass of k-tight
matching-spine digraphs. A matching-spine digraph D is k-strongly-tight if X is a clique
of size at least k and for every T ⊆ X of size k − 1 there is an arc (y+, y−) ∈ A(D[Y ])
such that T ⊆ (N(y+) ∩ N(y−)). We can show that if D is a matching-spine digraph
which is not k-strongly-tight, then αk(D) ≥ |Y | + min{k − 1, |X|}, which leads to the
following theorem.

Theorem 5. Let k ≥ 2 be an integer and let D[X, Y ] be a matching-spine digraph which
is not k-strongly-tight. Then, πk(D) ≤ αk(D).

3. Conclusion
We have proved Linial’s Conjecture for matching-spine digraphs which are not k-
strongly-tight (Theorems 4 and 5). This result relies on Lemma 3, whose proof is non-
trivial and is the main contribution of this paper. Only the proof for k-strongly-tight
matching-spine digraphs is missing in order to settle Linial’s Conjecture for matching
spine digraphs. We believe that inequality πk(D) ≤ |Y | + k − 2 holds for every k-
strongly-tight matching-spine digraph. We have already proved the result for some cases
that support this claim: for k = 2 and for |X| = k + 1.
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