
Spanning Cover Inequalities for
the Capacitated Vehicle Routing Problem

Guilherme G. Arcencio1, Matheus T. Mattioli1,
Pedro H. D. B. Hokama2, Mário César San Felice1

1Departamento de Computação, Universidade Federal de São Carlos, Brazil

2Instituto de Matemática e Computação, Universidade Federal de Itajubá, Brazil

hokama@unifei.edu.br, felice@ufscar.br

Abstract. In the k-Minimum Spanning Subgraph problem with d-Degree Center
we want to find a minimum cost spanning connected subgraph with n − 1 + k
edges and at least degree d in the center vertex, with n being the number of
vertices. In this paper we describe an algorithm for this problem and present
correctness demonstrations which we believe are simpler than those found in
the literature. A solution for the k-Minimum Spanning Subgraph problem with d-
Degree can be used to formulate spanning cover inequalities for the capacitated
vehicle routing problem.

1. Introduction
The k-Minimum Spanning Subgraph problem (k-MSS) is a generalization of the Mini-
mum Spanning Tree problem (MST) whose feasible solutions correspond to a spanning
connected subgraph with n− 1 + k edges, where n is the number of vertices. Moreover,
we consider the k-MSS with d-Degree Center (k-MSS with d-DC), a generalization of the
k-MSS whose feasible solutions have at least degree d in the center vertex, i.e., |δ(0)| ≥ d,
with δ(v) being the set of edges incident to vertex v and 0 being the center. Our interest in
these problems derive from the study of the Vehicle Routing Problem (VRP), in which we
want to find routes connecting customers with the depot in a way to minimize operational
costs, such as the total traveled distance or the size of the fleet. In the Capacitated Vehi-
cle Routing Problem (CVRP), we have the additional constraint that each route cannot
surpass the capacity limit of the vehicle.

Cover inequalities [Balas 1975, Wolsey 1975] are added to an Integer Linear Pro-
gram (ILP) to strengthen its linear programming relaxation. Traditionally, the inequality
left hand side (LHS) is the sum of several decision variables whose simultaneous occur-
rence violates a constraint, while its right hand side (RHS) is the number of variables
minus one. A spanning cover inequality slightly generalizes those because its LHS is the
sum of decision variables whose simultaneous occurrence does not violate the explicit
constraints of the problem. However, no feasible or good integer solution which includes
the LHS variables can be produced. Using the CVRP as example, a set of edges corres-
ponds to a spanning cover inequality if any collection of circuits using those edges has
cost greater than the best primal bound. It is NP-hard to solve the CVRP with some edges
fixed. However, the solution to the k-MSS with d-DC with some edges fixed can be used
to identify sets of edges which form spanning cover inequalities to the CVRP, since the
optimal solutions to this problem is a lower bound to the CVRP.

While searching for Lagrangean relaxations for the CVRP, Christofides, Mingozzi
and Toth [Christofides et al. 1981] solved the k-Degree Center Tree Problem (k-DCT),
which corresponds to the 0-MSS with k-DC. Improving over that, Fisher [Fisher 1994]
solved the k-MSS with 2k-DC, which he called k-Tree.

Our contributions. We propose an algorithm to solve the k-MSS with d-DC and prove
its correctness. We note that, while our algorithm has similarities with those from Chris-
tofides et al. and Fisher, we believe its correctness proof is simpler and some differences
in the algorithm together with an auxiliary result allow a more efficient implementation.

2. Lower bounds and algorithm
In a CVRP instance where each vertex v ∈ V has a certain demand dv and each vehicle
has capacity Q, every feasible solution will use at least k vehicles, where k =

⌈∑
v∈V dv
Q

⌉
.

Hence, any solution for CVRP is a collection of k or more circuits. Thus, it is
a spanning subgraph with at least n − 1 + k edges and degree at least 2k in the depot.
Therefore a solution for the k-MSS with 2k-DC is a lower bound for the CVRP optimum.
Next, we present our algorithm for the k-MSS with d-DC.

2.1. Algorithm for the k-MSS with d-DC

Our algorithm generates an MST, then greedily exchanges edges, increasing the depot’s
degree to the required value, and the resulting tree is then expanded to a k-spanning sub-
graph. Algorithm 1 shows the pseudocode of our algorithm.

Definition 2.1. Consider a spanning tree T of G = (V,E), with c : E → R∗+. Let 0 ∈ V
be the center and take an edge e ∈ δ(0)\T . The set T ∪{e} contains exactly one cycle C.
Letting e′ denote the most expensive edge in C \ δ(0), we define ∆(T, e) = c(e)− c(e′).

Algorithm 1 K-MSS WITH D-DC(G, c, k, d)
Input: graph G = (V,E), cost function c : E → R∗+, number of extra edges k and degree d of center
Output: a minimum cost spanning subgraph with n− 1 + k edges and center with degree at least d

1: T ← MST of G
2: while |δT (0)| < d do
3: z ← e ∈ δ(0) \ T such that ∆(T, e) is minimal
4: C ← the only cycle in T ∪ {z}
5: z′ ← the most expensive edge in C \ δ(0)
6: T ← (T ∪ {z}) \ {z′}
7: rename the edges in E such that c(ei) ≤ c(ei+1) for i = 1, · · · , |E| − 1
8: r ← 0
9: for i = 1 to |E| do

10: if r < k and ei /∈ T then
11: T ← T ∪ {ei}
12: r ← r + 1

13: return T

Definition 2.2. LettingG = (V,E) and c : E → R∗+, MSTd is a spanning tree of G among
those with center degree at least d which has minimum cost.

We want to prove that, by the end of the algorithm’s while loop, T is an MSTd.

Theorem 2.3. Let G = (V,E), c : E → R∗+, k and d in Z∗+ be an instance of the k-MSS
with d-DC. A subgraph T built by Algorithm 1’s first loop is an MSTd.

Proof. In this proof we call Ti the tree T in the beginning of the i-th iteration of the
algorithm’s while loop. Let l denote |δT1(0)|. If l ≥ d, we are done. Otherwise, suppose
that Ti is an MSTl+i−1. Note that this is true for i = 1. We show that Ti+1 is an MSTl+i.
We have

c(Ti+1) = c(Ti) + min
e∈δ(0)\Ti

{∆(Ti, e)} . (1)

Suppose, by contradiction, that Ti+1 is not an MSTl+i. Then, there must exist an
MSTl+i called T ∗ such that c(T ∗) < c(Ti+1). Since |δT ∗(0)| ≥ l+i and |δTi(0)| = l+i−1,
by the pigeonhole principle T ∗ has at least one edge z ∈ δ(0) \ Ti. Thus, by (1) we have
c(Ti+1) ≤ c(Ti) + ∆(Ti, z).

Let Cz be the cycle generated in Ti by inserting z. Note that T ∗ \ {z} has 2
components and that Cz intersects both. Moreover, let z′ ∈ Cz be an edge, other than z,
which reconnects these 2 components in T ∗. Let S = (T ∗ ∪ {z′}) \ {z}. Note that S
is a spanning tree with |δS(0)| ≥ l + i − 1. We have ∆(Ti, z) = min

e∈Cz

{c(z) − c(e)} ≤
c(z)− c(z′). Thus

c(S) = c(T ∗)− c(z) + c(z′)

≤ c(T ∗)−∆(Ti, z)

< c(Ti+1)−∆(Ti, z)

≤ c(Ti) + ∆(Ti, z)−∆(Ti, z) = c(Ti) ,

which contradicts the hypothesis that Ti was an MSTl+i−1. Therefore, by induction, T
will be an MSTd by the end of d− l iterations.

Due to Theorem 2.3, we have that the first loop of Algorithm 1 produces an opti-
mal solution to the 0-MSS with d-DC. The second loop of Algorithm 1 adds k least cost
edges, producing a k-MSS with d-DC, as stated by the following lemma. Due to space
constraints, its proof was omitted.

Lemma 2.4. Let G = (V,E), c : E → R∗+, k and d in Z∗+ be an instance of the k-MSS
with d-DC. A subgraph T built by Algorithm 1’s second loop is an optimal solution for
k-MSS with d-DC.

3. Implementation details and efficiency
Consider an instance of the k-MSS with d-DC, whose graph G = (V,E), with costs c in
the edges, has n vertices and m edges. Our algorithm takes time O(m log n) to build the
MST at Line 1 and to add the extra edges in its second loop.

Now, focusing on the first loop of the algorithm, we can compute every ∆(·) in
the first iteration using a modified Depth First Search (DFS) beginning at the depot. This
DFS must travel only through edges of tree T , and it keeps track of the most expensive
edge e′, not incident to the depot, in the current path. Moreover, every time the DFS finds
an edge e outside of T which is incident to the depot, it computes ∆(e) = c(e)− c(e′).

center

10

6 5 4 3 2 1

11
12

13
14

15
16

Figure 1. Worst case for the number of ∆(T, e) updates

Computing every ∆(·) using this DFS approach costs at most O(m) time, since
the DFS still needs to consider every edge, despite only traveling through edges of T . In
each iteration of the first loop an edge is added to the depot, therefore we have at most
d − 1 iterations, once T is connected. Thus, a straightforward implementation which
recomputes every ∆(·) in each iteration takes time O(dm). However, this might not be
necessary due to the following property, whose proof we omitted due to space constraints.

Property 3.1. In each iteration of Algorithm 1’s first loop we need to update a ∆(T, e)
only if the most expensive edge e′ in Ce was removed from T and e was not added to T in
the last iteration.

Thus, we can keep a table indexed by the most expensive edge in each circuit
and, once an edge e′ is removed we can check which circuits were affected and update
accordingly. While this observation does not improve the worst case of the algorithm, it
can have a significant empirical impact, since the removal of an edge seems to only affect
the ∆(·) of others in pathological cases, as the one shown in Figure 1, where the edge
removed in each iteration affects the ∆(·) of all other vertices.

4. Future works
We want to use this algorithm to find spanning cover inequalities for the CVRP and eva-
luate its impact empirically. Moreover, we would like to improve the efficiency of this
algorithm and to generalize this lower bound to variants of the CVRP.

Acknowledgments
The authors gratefully acknowledge the financial support of grants FAPESP
#2020/06103-0, FAPESP #2020/06105-2, and CNPq process 435617/2018-4.

References
Balas, E. (1975). Facets of the knapsack polytope. Mathematical programming, 8(1):146–

164.

Christofides, N., Mingozzi, A., and Toth, P. (1981). Exact algorithms for the vehicle
routing problem, based on spanning tree and shortest path relaxations. Mathematical
programming, 20(1):255–282.

Fisher, M. L. (1994). Optimal solution of vehicle routing problems using minimum k-
trees. Operations research, 42(4):626–642.

Wolsey, L. A. (1975). Faces for a linear inequality in 0–1 variables. Mathematical Pro-
gramming, 8(1):165–178.

