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Abstract. We present a natural probabilistic variation of the multi-depot vehicle
routing problem with pickup and delivery. We denote this variation by Stochas-
tic multi-depot capacitated vehicle routing problem with pickup and delivery
(SMCVRPPD). We present an algorithm to compute the expected length of an a
priori route under general probabilistic assumptions. To solve the SMCVRPPD
we propose an Iterated Local Search (ILS) and a Variable Neighborhood Search
(VNS). We evaluate the performance of these heuristics on a data set adapted
from TSPLIB instances. The results show that the ILS is effective to solve
SMCVRPPD.

1. Introduction
After several decades of development, the vehicle routing problem (VRP) has be-
come an important content in logistics management research, and has been widely
used in transportation system, logistics distribution system and express delivery system
[Cao and Yang 2017]. Several versions of the vehicle routing problem have been pro-
posed, such as the capacitated vehicle routing problem (CVRP), multi-depot vehicle rout-
ing problem (MDVRP) and vehicle routing problem with pickups and deliveries (VRPPD)
[Oyola et al. 2017]. To better describe the real world, stochastic data may be included in
the model. In this case a new problem arises, stochastic multi-depot capacitated vehicle
routing problem with pickup and delivery (SMCVRPPD). We provide a description of the
SMCVRPPD in Section 2. Section 3 presents the an algorithm to compute the expected
length of an a priori route. Section 4 describes the proposed heuristic and computational
experiments. Section 5 presents the conclusions of this work.

2. Problem description
In this work, SMCVRPPD is defined as follows. LetG = (V,E) be a complete undirected
graph, where V = {v1, . . . , vn} is the vertex set and E = {(vi, vj) : vi, vj ∈ V, i < j} is
the edge set. With each edge (vi, vj), it is associated a non-negative cost or distance dij .
A subset of vertices D = {v1, . . . , vm} represents the depots, and the remaining vertices
V ′ = {vm+1, . . . , vn} corresponds to pickup and delivery points. Let w = |V ′|/2, then
w vertices are pickup points and w vertices are delivery points. Each pickup point vi is
associated with a unique delivery point vi+w, and vice versa, for m + 1 ≤ i ≤ m + w.



There are m identical vehicles of unlimited capacity such that each one is located in a
single depot. Each vehicle leaves its depot, serves a subset of pickup and delivery vertices
and returns to its depot, forming a cycle (or route). The problem consists in determining
a set of m vehicle cycles of minimal total cost considering the following constraints: a)
each cycle starts and ends at the corresponding vehicles depot; b) each v ∈ V ′ is visited
exactly once by one vehicle c) each pair of pickup and delivery points, e.g {vi, vi+w} for
m+ 1 ≤ i ≤ m+ w, must belong to the same cycle and d) each cycle has an orientation
where each pickup vertex in this cycle appears before its delivery pair.

The SMCVRPPD has one type of uncertainty: stochastic pickup and delivery
points. Each subset {vi, vi+k} ∈ V ′, for m + 1 ≤ i ≤ m + k, has a probability pi
of being present. When pickup point vi is absent, delivery point vi+k is also absent,
and its demand ξi is equal to zero otherwise is equal to 1. In this work, we assume all
demands are unitary (1 or 0), discrete and independent. In a first stage, a set of cycles
satisfying conditions a)- d) of the SMCVRPPD are determined. The presence or absence
of {vi, vi+k} is revealed at the latest upon leaving the preceding vertex of vi, but the
positive demand of every remaining customer becomes known only when the vehicle
arrives at the delivery’s location. In a second stage, the first stage routes are followed
as planned, with the following exceptions: 1) any absent customer is skipped and 2)
whenever the remaining vehicle capacity is not enough to carry current node demand,
the vehicle follows a strategy, in either case, route failure is said to occur and a strategy
used to deal with the problem failure. We use the following strategy: once the vehicle
reaches its maximum capacity, a penalty is paid for the transportation of excess cargo
by an outsourced service, and the vehicle continues the original route. The SMCVRPPD
consists of designing a first stage solution to minimize the expected cost of the second
stage solution.

3. The expected cost of an a priori route
Given a priori computed route s = (v0, v1, . . . , v2q, v0), where v0 is a depot, let ls be the
cost/length of s. Our goal is to compute the expected length E[ls] of route s, given that
during its execution, each pair {vi, vi+w} of pickup and delivery points in this route have a
probability of occurring during s’s execution. We may also refer to node vi as ri, and vi+w

as ci. Let P (vi) be the probability that node vi appears in s, therefore P (ri) = P (ci). In
this work we use the following strategy, each time the maximum capacityQ of the vehicle
is reached, a penalty must be paid. Such penalty represents the cost of travel from the
pickup point where the vehicle was full to its associated delivery point. Then the vehicle
load is updated to Q − 1 and the vehicle continues the original route. To compute the

Algorithm 1: Expectation
exp = 0 ;
for si ⊆ S do

prob := 1, cost := Cost of the route si using strategy with penalty
for (rj , cj) ∈ si do

prob = prob× P (rj)

for (rj , cj) 6∈ si do
prob = prob× (1− P (rj))

exp = exp+ cost× prob



expected cost E[ls] of a route s we use Algorithm 1. Let si be a valid route generated
from the route s, e.g., s1 = (v0) and s2 = (v0, r1, c1, v0) are valid routes. In s1 no pair of
pickup and delivery appear in the route. In s2 only the pair (r1, c1) appears. S denotes the
set of valid routes generated from s. There are 2q valid routes generated from s.

4. Heuristics approaches
We present the local search operators, perturbation operators, and heuristics used by VNS
and ILS. We adapt the algorithms VNS [Rios et al. 2020b] and ILS [Rios et al. 2020a] for
the SMCVRPPD. This means that the operators are executed following the sequence of
the original algorithms.

4.1. Initial solution generation
The method employed for building a feasible initial solution is based in the work of
[Kuo and Wang 2012], so it is generated by following two steps. The first step is called
nodes assignment. Each pair of pickup and delivery is assignment to one of the depots.
After all vertices have been assigned to depots, the second step, called nodes sequencing,
decides the service sequence of the pickup and delivery nodes.

4.2. Local search
A set {N1, . . . , N6} of six neighborhood operators were used by the proposed heuristics.
All operators are exhaustively executed. These operators are adapted in such a way that
they preserve feasibility. The list of neighborhoods considered are:

• Shift(1,0) – N1 – A pickup and delivery pair r, c is removed from a route t1 and
each one is moved to the best position in route t2 keeping the feasibility of the
solution.

• Swap(1,1) – N2 – An exchange between a pair r1, v1 from a route t1 and another
pair r2, v2 from route t2. Each vertex of the pairs are inserted in the best possible
position while maintaining the feasibility of the solution.

• Mix-Shift(1,0) – N3 – This operator is similar to the Shift(1,0) operator with the
difference that now it is allowed a movement within its own route.

• 2-opt – N4 – Two nonadjacent arcs are removed and other two are added to form
a new route. We only consider movements that do not break the constraints of the
problem.

• 3-opt –N5 – Three nonadjacent arcs are removed and other two are added to form
a new route. We only consider movements that do not break the constraints of the
problem.

• Reverse – N6 – This operator reverses the direction of the route. Then swaps are
performed between each pair of pickup and delivery.

4.3. Perturbation Mechanism
A set P of two perturbation mechanisms were adopted in the heuristics. Every time
the perturb() function is called one of the following operators is randomly selected and
applied.

• Double-Swap – P 1 – Two Swap(1,1) operators are performed in sequence.
• Depot Exchange – P 2 – The depot exchange operator select two depots at ran-

dom, and exchange their routes.



Instance ILS VNS
Name |V | D Q Best Cost Avg. Cost Time (s) Best Cost Avg. Cost Time (s)
bayg29a 29 3 4 378.60 652.96 23.51 378.60 670.93 25.10
bayg29b 29 9 4 3185.55 4388.36 10.77 4055.68 4661.49 12.38
bayg29c 29 9 2 1717.82 2134.55 3.84 1836.92 2161.74 4.14
dantzig42a 42 8 4 272.98 348.09 3.26 288.99 350.88 3.55
dantzig42b 42 4 4 91.24 141.94 1539.08 107.75 144.41 1558.08
dantzig42c 42 10 2 304.77 413.34 2.55 354.52 419.87 2.85
eil51a 51 3 4 60.41 117.29 8282.83 106.39 131.08 8382.83
eil51b 51 7 5 79.67 112.04 123.72 86.43 112.71 134.72
eil51c 51 9 3 136.15 193.84 8.34 159.49 196.17 8.45

5. Computational experiments
We conducted experiments using a data set derived from three TSPLIB instances (
bayg29, dantzig42 and eil51). For each of these instances, n vertices in the interval of
[2, 10] were randomly selected to be depots. The capacity of each vehicle Q was ran-
domly generated in the interval [2,10]. A random matching was performed among the
other vertices to create pickup and delivery pairs. The probability of presence of each
pickup and delivery pair was chosen uniformly in the interval [0, 1]. We generate 9 test
instances. The proposed heuristic (VNS and ILS) were coded in C++ and all experiments
were run on a Linux operating system with 3 GB memory and Intel Core i5 2.54x4 Ghz
processor. Computational times reported here are in CPU seconds on this machine. Ten
independent runs of the algorithms were performed for each test case.

The results show that the ILS was superior for all instances tested. Our approach
can be used as benchmark for future research in this area. The SMCVRPPD can be
further generalized to handle more practical constraints, e.g., time windows and stochastic
demands.
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