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Abstract. A (2, 1)-total labelling of a simple graph G is a function π : V (G) ∪
E(G) → {0, . . . , k} such that: π(u) 6= π(v) for uv ∈ E(G); π(uv) 6= π(vw)
for uv, vw ∈ E(G); and |π(uv) − π(u)| ≥ 2 and |π(uv) − π(v)| ≥ 2 for
uv ∈ E(G). The (2, 1)-total number λt2(G) of G is the least k for which G
admits such a labelling. In 2008, Havet and Yu conjectured that λt2(G) ≤ 5 for
every connected graph G 6∼= K4 with ∆(G) ≤ 3. We prove that, for near-ladder
graphs, λt2(G) = 5, verifying Havet and Yu’s Conjecture for this class.

1. Introduction
Let G be a simple graph with V (G) its set of vertices and E(G) its set of edges. The
degree of v ∈ V (G) is denoted d(v) and the maximum degree of G is denoted ∆(G). If
d(v) = k for every v ∈ V (G), then G is called k-regular; if k = 3, we say G is cubic.

The Frequency Channel Assignment Problem consists in the assignment of fre-
quency channels to transmitters satisfying some given constraints. In fact, a network of
transmitters can be viewed as a graph and the channels as colors or labels, which gives a
graph theoretical perspective for the problem (Metzger, 1970; Zoeliner and Beall, 1977;
Hale, 1980). A graph labelling that has been motivated by the Frequency Channel Assign-
ment Problem is the L(2, 1)-labelling, introduced by Griggs and Yeh (1992). An L(2, 1)-
labelling of a graph G is a function f : V (G) → {0, . . . , k} such that |f(u) − f(v)| ≥ 2
for uv ∈ E(G), and f(u) 6= f(w) if uv, vw ∈ E(G) and uw /∈ E(G). The least in-
teger k for which a graph G admits an L(2, 1)-labelling is denoted λ2,1(G). Fiala et al.
(2001) proved that deciding whether λ2,1(G) ≤ l is an NP-complete problem for all l ≥ 4.
However, λ2,1(G) has been determined for some classic families of graphs such as paths,
cycles (Griggs and Yeh, 1992) and trees (Chang and Kuo, 1996).

In this work, we investigate a variant of L(2, 1)-labellings, proposed by Havet and
Yu (2008), called (2, 1)-total labelling. A k-(2, 1)-total labelling of a simple graph G
is a function π : V (G) ∪ E(G) → {0, . . . , k} such that: π(u) 6= π(v) for uv ∈ E(G);
π(uv) 6= π(vw) for uv, vw ∈ E(G); and |π(uv)− π(u)| ≥ 2 and |π(uv)− π(v)| ≥ 2 for
uv ∈ E(G). The least integer k for which G admits a k-(2, 1)-total labelling is denoted
λt2(G) and called (2, 1)-total number. We remark the strong relation between L(2, 1)-
labellings and (2, 1)-total labellings: a (2,1)-total labelling of a graph G is associated
with an L(2, 1)-labelling of the graph obtained by subdividing each edge of G exactly
once. The (2, 1)-total number has been determined for cycles, paths, caterpillars (Havet
and Yu, 2008; Khan et al., 2010), complete bipartite graphs (Lih et al., 2009), among
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others. When Havet and Yu (2008) introduced (2, 1)-total labellings, they also proved
that graphs with ∆(G) ≤ 3 have λt2(G) ≤ 6 and showed that this bound is tight, by
proving that λt2(K4) = 6. However, the authors believe that K4 is the only graph with
∆(G) = 3 and λt2(G) > 5 and, thus, posed Conjecture 1.

Conjecture 1. If G is a connected graph with ∆(G) ≤ 3 and G 6∼= K4, then λt2(G) ≤ 5.

Conjecture 1 has been verified for graphs G with ∆(G) ≤ 2 (Havet and Yu, 2008;
Khan et al., 2010), but it is still open for graphs G with ∆(G) = 3. Nevertheless, it
was verified for a few classes of graphs with ∆(G) = 3: for trees, Wang and Chen
(2009) presented a necessary and sufficient condition for λt2(G) = 4 or λt2(G) = 5;
for bipartite graphs, Havet and Thomassé (2009) presented a polynomial time algorithm
which determines λt2(G); for Flower Snarks, Tong et al. (2010) showed that λt2(G) = 5;
for graphs whose vertex set is covered by a set of independent triangles, Sethuraman and
Velankanni (2015) proved that λt2(G) = 5.

In the article posing Conjecture 1, Havet and Yu (2008) established some initial
properties and results. Two of these, important for this work, are presented in the follow-
ing lemmas.

Lemma 2. Let G be a simple ∆(G)-regular graph. Then, λt2(G) ≥ ∆(G) + 2. �

Lemma 3. Let G be a regular bipartite graph. Then λt2(G) = ∆(G) + 2. �

In this work, we determine the (2, 1)-total number of a family of cubic graphs
called near-ladders, showing that these graphs verify Conjecture 1.

2. Main results
Initially, we define near-ladder graphs and present an auxiliary result. In Theorem 5, we
show that near-ladder graphs have (2, 1)-total number equal to five.

For an integer ` ≥ 2, let n = 2`. A ladder Ln is a simple graph with V (Ln) =
{u1, u2, . . . , u`, v1, v2, . . . , v`} and E(Ln) = Eh ∪ Ev, such that Eh = {uiui+1, vivi+1 :
1 ≤ i < `} and Ev = {uivi : 1 ≤ i ≤ `}. A near-ladder is a cubic graph built from
Ln, n > 4, by adding laminar edges, v1v` and u1u`, or cross edges, u1v` and v1u`. We
partition the family of near-ladder graphs into two subfamilies PLn andMLn, according to
the added edges. A graph PLn (Prism or Circular Ladder) is obtained by adding laminar
edges to Ln and, thus V (PLn) = V (Ln) and E(PLn) = E(Ln) ∪ {v1v`, u1u`}. A graph
MLn (Möbius Ladder) is obtained by adding cross edges to Ln. Thus, V (MLn) = V (Ln)
and E(MLn) = E(Ln) ∪ {v1u`, u1v`}.

Lemma 4 characterizes the near-ladder graphs that are bipartite. Since these are
cubic graphs, by Lemma 3, we conclude they verify Conjecture 1.

Lemma 4. Let G be a near-ladder with n = 2` and ` ≥ 3. If G ∼= PLn, then G is
bipartite if and only if ` is even. If G ∼= MLn, then G is bipartite if and only if ` is odd.

Outline of the proof. Let G ∼= PLn with n = 2`, ` ≥ 3. Suppose G is bipartite. Then,
since v1, v2, . . . , v` induces a cycle, we conclude that ` is even. For G ∼= MLn, we
consider cycle v1 . . . v`u1v1, which is odd when ` is even. For the converse, we show that
A = {vi : i is even}∪{ui : i is odd} andB = V (G)\A is a bipartition ofG forG ∼= PLn

when ` is even and for G ∼= MLn when ` is odd.



Theorem 5. Let G be a near-ladder graph. Then, λt2(G) = 5.
Outline of the proof. Let G be a near-ladder graph with n = 2`, ` ≥ 3. If G is bipartite,
then the result follows. Then, suppose G is nonbipartite. Thus, G ∼= PLn with n ≡ 2
(mod 4) or G ∼= MLn with n ≡ 0 (mod 4). In order to prove that λt2(G) = 5 for these
graphs, it is sufficient to present a 5-(2, 1)-total labelling for them.

First, we describe, in Figure 1(a), a 5-(2, 1)-total labelling for PL6. Thus, for the
remaining of this proof, suppose G 6∼= PL6. We consider two edge disjoint subgraphs of
G: Bn−2

∼= Ln−2, with V (Ln−2) = {v2, v3, . . . , v`−1, u2, u3, . . . , u`−1}; and B2
∼= L2

with V (L2) = {v1, v`, u1, u`}. Subgraph B2 has laminar or cross edges depending on
whether G ∼= PLn or G ∼= MLn. By construction, G is obtained from the union of Bn−2

and B2 by adding the link edges EL = {u1u2, v1v2, u`−1u`, v`−1v`}. A 5-(2, 1)-total-
labelling π of G is obtained from 5-(2, 1)-total labellings of Bn−2 and B2, and a specific
label assignment for the edges of EL.
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(a) Graph PL6.

4

v1

2
u1

0
ul

5

vl

0

4

2

1

(b) Subgraph B2 of G ∼= PLn.
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(c) Subgraph B2 of G ∼= MLn.

Figure 1. 5-(2, 1)-total labellings of PL6 and subgraphs B2.

Let G ∼= PLn, n > 6 and n ≡ 2 (mod 4). For Bn−2, let π be defined as follows.
For each vertex vi, let π(vi) = 0 if i is even, and π(vi) = 1, otherwise. For each vertex ui,
let π(ui) = 1 if i is even, and π(ui) = 0, otherwise. For each edge uiui+1 and vivi+1, let
π(uiui+1) = π(vivi+1) = 3 if i is even, and π(uiui+1) = π(vivi+1) = 4, otherwise. For
each edge uivi, 3 ≤ i ≤ `− 1, let π(uivi) = 5, and π(uivi) = 4 if i = 2. For B2, consider
the fixed 5-(2, 1)-total labelling in Figure 1(b). Finally, the edges of EL are assigned the
following labels: π(v`−1v`) = π(u`−1u`) = 3, π(v1v2) = 2 and π(u1u2) = 5.

By the definition, every pair of adjacent vertices inBn−2 and every pair of adjacent
edges in Eh ∩ E(Bn−2) have distinct labels. Note that every e ∈ Eh ∩ E(Bn−2) has
π(e) ∈ {3, 4}, every e ∈ Ev ∩ E(Bn−2) \ {u2v2} has π(e) = 5, and π(u2v2) = 4 6= 3 =
π(u2u3) = π(v2v3). Also, in Bn−2, the absolute difference between the label of an edge
and the label of its endpoints is at least two since every vertex v has π(v) ∈ {0, 1} and
every edge e has π(e) ∈ {3, 4, 5}. This implies that π, restricted to Bn−2, is a 5-(2, 1)-
total labelling. Thus, recalling that B2 was assigned a fixed labelling, we conclude that π,
restricted to G − EL, is a 5-(2, 1)-total labelling of G − EL. So, it remains to verify the
labels assigned to the link edges.

By inspection, we first note that the endpoints of the link edges are assigned differ-
ent labels. Now, we verify that the difference between the label of each link edge and the
labels assigned to its endpoints is at least two. Since ` is odd: for edge v`−1v`, it holds that
|π(v`−1v`)−π(v`−1)| = |3−0| ≥ 2 and |π(v`−1v`)−π(v`)| = |3−5| ≥ 2; for edge u`−1u`,
we have |π(u`−1u`) − π(u`−1)| = |3 − 1| ≥ 2 and |π(u`v`−1) − π(u`)| = |3 − 0| ≥ 2.
Also, |π(v1v2) − π(v1)| = |2 − 4| ≥ 2 and |π(v1v2) − π(v2)| = |2 − 0| ≥ 2 for
edge v1v2. Finally, for edge u1u2, it holds that |π(u1u2) − π(u1)| = |5 − 2| ≥ 2 and
|π(u1u2)− π(u2)| = |5− 1| ≥ 2.



Now, we verify the labels of the edges adjacent to the link edges. For x ∈ V (G),
let L(x) be the set of labels of the non-link edges incident with x. By construction:
L(v2) = L(u2) = {3, 4}; since ` is odd, L(v`−1) = L(u`−1) = {4, 5}; L(v1) = {0, 1};
L(u1) = {0, 4}; L(v`) = {1, 2}; and L(u`) = {2, 4}. Thus, π(v`−1v`) = 3 /∈ L(v`−1) ∪
L(v`), π(u`−1u`) = 3 /∈ L(u`−1) ∪ L(u`), π(v1v2) = 2 /∈ L(v1) ∪ L(v2) and π(u1u2) =
5 /∈ L(u1) ∪ L(u2). Therefore, we conclude that π is a 5-(2, 1)-total labelling of G.

In order to complete the proof, consider G ∼= MLn with n ≡ 0 (mod 4). For this
case, the vertices of Bn−2 are labelled as in the previous case and its edges are labelled as
follows. For each edge uiui+1 and vivi+1, let π(uiui+1) = π(vivi+1) = 4 if i is even, and
π(uiui+1) = π(vivi+1) = 3, otherwise. For each edge uivi, 3 ≤ i ≤ l−1, let π(uivi) = 5,
and π(uivi) = 3 if i = 2. For B2, consider the fixed 5-(2, 1)-total labelling presented in
Figure 1(c). Finally, the labels of the edges of EL are defined as follows: π(v`−1v`) = 3,
π(u`−1u`) = π(v1v2) = 2 and π(u1u2) = 5. We verify that π is a 5-(2, 1)-total labelling
by a reasoning similar to the one used for PLn, n > 6 and n ≡ 2 (mod 4).

References
Chang, G. J. and Kuo, D. (1996). The L(2, 1)-labeling problem on graphs. SIAM Journal

on Discrete Mathematics, 9(2):309–316.
Fiala, J., Kloks, T., and Kratochvı́l, J. (2001). Fixed-parameter complexity of λ-labelings.

Discrete Applied Mathematics, 113(1):59–72.
Griggs, J. R. and Yeh, R. K. (1992). Labelling graphs with a condition at distance 2.

SIAM Journal on Discrete Mathematics, 5(4):586–595.
Hale, W. K. (1980). Frequency assignment: Theory and applications. Proceedings of the

IEEE, 68(12):1497–1514.
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