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Abstract. We introduce a new class of intersection graphs, the edge intersection
graphs of paths on a triangular grid, called EPGt graphs. We compare this new
class with the well-known class of EPG graphs. A turn of a path at a grid point is
called a bend. An EPGt representation in which every path has at most k bends
is called a Bk-EPGt representation and the corresponding graphs are called Bk-
EPGt graphs. We characterize the representation of cliques with three vertices
and chordless 4-cycles in B1-EPGt representations.

1. Introduction
In 2009, Golumbic, Lipshteyn and Stern [Golumbic et al. 2009] introduced the notion of
edge intersection graphs of paths on a rectangular grid. This family of graphs, called
EPG graphs, is a generalization of the edge intersection graphs of paths on a degree-
four tree [Golumbic and Jamison 1985, Golumbic et al. 2005], in the sense that every
EPT representation on a degree-four tree is an EPG representation. We consider here
an even more general structure, from which a family of paths is taken, the triangular grid.
A triangular grid consists of a rectangular grid with an extra direction (see Figure 1). We
call this extra direction the diagonal. In most applications, a triangular grid is usually dis-
played as depicted in Figure 1(a). Here, however, it is more natural to consider it depicted
as in Figure 1(b), since we are treating such a grid as a generalization of the rectangular
one. Notice that both drawings are equivalent, in the sense that if we rotate 15 degrees
the “/”-shaped lines, and 30 degrees the “\”-shaped ones, both in counter-clockwise di-
rection, of Figure 1(a), we obtain precisely the grid drawing of Figure 1(b). We call the
edge intersection graphs of paths on a triangular grid as EPGt graphs.

A motivation for studying these graphs is the same from EPG graphs, com-
ing originally from circuit layout problems [Molitor 1991]. Another motivation is a
rather natural optimization one, which consists of deciding whether an EPGt graph ad-
mits a representation having paths bending at most k times. In this paper, we intro-
duce this new class of EPGt graphs and provide a characterization of representations of
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cliques of size 3 and 4-cycles on those grids, extending the analogous results for EPG
graphs [Golumbic et al. 2009].

The triangular grid has been studied in the context of the channel assignment
problem with separation (CAPS). In cellular networks, a large number of base stations
are expected to cover communications over a region [Zander 2000]. Such a covering can
be achieved by placing base stations according to a regular plane tessellation. The most
important regular tessellation of the plane is triangular tessellation [Bertossi et al. 2004],
and the corresponding topology of such a tessellation is the triangular grid, known as tri-
angular lattice on those applications. The reason for adopting this particular tessellation
comes from the fact that base stations are uniformly distributed in the coverage region, and
an individual base station generally has six directional transceivers [Janssen et al. 1998].
Thus, the base station’s coverage area can be idealized as a regular triangular tessellation.
The channel assignment problem with separation (CAPS) deals with assigning frequen-
cies to stations such that there is no interference between frequencies assigned to nearby
stations while trying to minimize the span (the difference between highest and lowest
frequencies) of assigned frequencies.

(a) (b) (c) (d) (e)

Figure 1. (a-b) The triangular grid, (c) graph, (d) B1-EPG representation and (e)
B1-EPGt representation.

Let P and Q be paths on a triangular grid G. We write P∩vQ when referring to the
vertex intersection between P and Q, and P ∩e Q when referring to the edge intersection
between P and Q. We define the edge intersection graph of paths EPGt(P) of a collection
of paths P on a triangular grid G as having vertices which correspond to the members of
P , such that two vertices are adjacent in EPGt(P) if and only if the corresponding paths
in P share at least one edge on G. A graph G is called an edge intersection graph of paths
on a triangular grid (EPGt) if G = EPGt(P) for some P and G, and ⟨P ,G⟩ is an EPGt

representation of G. Similarly to the EPG graphs, a turn of a path at a grid point is called
a bend. A path is a Bk-path if it contains at most k bends. An EPGt representation is
Bk-EPGt if each path has at most k bends. A graph that has a Bk-EPGt representation is
called Bk-EPGt. The triangular bend-number of a graph G is the least k such that G is
Bk-EPGt. The graph in Figure 1(c) is B1-EPGt, as the representation in Figure 1(e) shows.

A segment of a path is a maximal subpath of the path with no bends. Therefore,
a 0-bend path has only one segment (the path itself), whereas a 1-bend path has two
segments. A 1-bend path can be referred to as narrow, normal or wide, depending on the
angle formed by its two segments. Note in Figure 1(e) that Pa and Pb are wide paths, Pd

and Pe are normal paths and Pc is a narrow path.

Let G be a graph and ⟨P ,G⟩ a B1-EPGt representation of G on a triangu-
lar grid G, where P = {Pi | 1 ≤ i ≤ |V (G)|}. We define U(P) ⊂ G as the
paths of P , such that: U(P) = {s | s is a segment of a path Pi such that Pi ∩e Pj ̸= ∅



for some 1 ≤ i, j ≤ |V (G)| with i ̸= j} that is, U(P) is the subgraph of G induced by the
vertices in segments of paths which intersect other paths in the family.

2. Cliques on B1-EPGt Representations

In this section, we characterize the B1-EPGt representations of cliques with three vertices.

Let ⟨P ,G⟩ be a B1-EPGt representation of a graph G on a triangular grid G. Let
C be a maximal clique of G and PC ⊆ P be the set of paths representing the vertices of
C. If

⋂
ePC ̸= ∅, then C is called an edge-clique. If

⋂
ePC = ∅ and

⋂
v PC = {b}, then

C is called a claw-clique. If U(PC) has a right triangle T as a subgraph, then C is called
a triangular-clique.

Let T be a right triangle on the grid and s1, s2 and s3 the sides of T . The points of
the grid {v1} = s1∩v s2, {v2} = s1∩v s3 and {v3} = s2∩v s3 are called the corners of T .

Note that the existence of a third direction on the grid allows the arising of a new
type of clique, the triangular clique. See Figure 2 for examples of it.
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Figure 2. (a) Edge-clique, (b) claw-clique and (c-h) triangular-clique.

Theorem 1. Let ⟨P ,G⟩ be a B1-EPGt representation of a graph G, and let C =
{v1, v2, v3} be a clique of G. Then, C corresponds to either an edge-clique, a claw-clique,
or a triangular-clique.

3. Cycles on B1-EPGt Representations

In this section, we characterize the B1-EPGt representations of 4-cycles.

Let G be a chordless 4-cycle and P = {P1, P2, P3, P4} the set of paths represent-
ing the vertices of G on a triangular grid. We denote by Px,y a path of G connecting
vertices x and y. If U(P) is a subdivision of a 4-star, let b be its central vertex and
a1, a2, a3, a4 be the vertices of U(P) that have degree 1. Consider the following cases:

• If each Pai,b ∪ Pai+1,b for all 1 ≤ i ≤ 4 is contained in a different member of P ,
where a5 = a1, then P is called a true pie. In a true pie, at least three of the four
paths bend at b. See Figure 3(a).

• If each Pa1,b∪Pa2,b, Pa2,b∪Pa4,b, Pa4,b∪Pa3,b, Pa3,b∪Pa1,b is contained in a different
member of P , then P is called a false pie. In a false pie, at least two of the paths
bend at b. See Figure 3(b).

Let Q be a quadrilateral subgraph of G of any size, and let s1, s2, s3, s4 be the
segments of G forming the sides of Q, such that si ∩v si+1 ̸= ∅ for 1 ≤ i ≤ 4, where
s5 = s1. We call si ∩v si+1 the corners of Q. If Q is a subgraph of U(P), each corner of
Q is the bend for a different member of P , P2 ∩e P3 ̸= ∅, P3 ∩e P4 ̸= ∅, P4 ∩e P1 ̸= ∅,
P2 ∩e P4 = ∅, and P1 ∩e P3 = ∅, then P is called a frame.



Let T be a right triangle in G. If T ⊆ U(P), each corner of T is the bend for at
most two different members of P , P2∩eP3 ̸= ∅, P3∩eP4 ̸= ∅, P4∩eP1 ̸= ∅, P2∩eP4 = ∅,
and P1 ∩e P3 = ∅, then P is called a flag. See Figure 3(f).

Let T1, T2 be distinct right triangles, such that T1 ∩v T2 = {v} where v is a corner
of both T1 and T2. If G = T1 ∪ T2 ⊆ U(P), each corner of G is the bend of a different
member of P , P2∩eP3 ̸= ∅, P3∩eP4 ̸= ∅, P4∩eP1 ̸= ∅, P2∩eP4 = ∅, and P1∩eP3 = ∅,
then P is called a butterfly. See Figure 3(g).

Note that the existence of a third direction on the grid, when compared to a rect-
angular grid, allows the arising of new representations of a 4-cycle. See in Figure 3 some
examples of representations of a 4-cycle on a triangular grid.
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Figure 3. (a) True pie, (b) false pie, (c-e) frame, (f) flag and (g) butterfly.

Theorem 2. Let ⟨P ,G⟩ be a B1-EPGt representation of G. Every chordless 4-cycle in G
corresponds to either a true pie, a false pie, a frame, a flag or a butterfly in P .

4. Conclusions and Open Questions
We introduce the concept of Bk-EPGt graphs, a generalization of Bk-EPG graphs. We
characterize the representation of cliques of size 3 and chordless 4-cycles in B1-EPGt

graphs and, we conjecture that the representation of maximal cliques in B1-EPGt graphs
can be characterized by the edge-clique, claw-clique and triangular-clique. The complex-
ity of recognizing Bk-EPG (resp. Bk-EPGt) graphs is open for all k ≥ 3 (resp. k ≥ 1).
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