O Problema do Número Clique Orientado Absoluto é NP-completo

E. M. M. Coelho¹, H. Coelho¹, L. Faria², M. P. Ferreira¹, S. Klein³

¹UFG - Goiânia, ²UERJ - Rio de Janeiro, ³UFRJ - Rio de Janeiro Brasil

{erikamorais,hebert}@inf.ufg.br, luerbio@cos.ufrj.br,
mateusferreira@inf.ufg.br, sula@cos.ufrj.br

Abstract. Let $\overrightarrow{G} = (V, A)$ be an oriented graph. The oriented chromatic number of \overrightarrow{G} denoted by $\chi_o(\overrightarrow{G})$ is a well-know parameter in the literature. The absolute oriented clique number, $\omega_{ao}(\overrightarrow{G})$, is the order of the largest subgraph \overrightarrow{H} of \overrightarrow{G} such that $\chi_o(\overrightarrow{H}) = |V(\overrightarrow{H})|$. In this work we show that deciding if $\omega_{ao}(\overrightarrow{G}) \leq k$ is an NP-complete problem and there is no polynomial-time approximation within a factor of $n^{1-\varepsilon}$ for all $\varepsilon > 0$, unless P = NP.

Resumo. Seja $\overrightarrow{G} = (V, A)$ um grafo orientado. O número cromático orientado de \overrightarrow{G} denotado por $\chi_o(\overrightarrow{G})$ é um parâmetro bem conhecido na literatura. O número clique orientado absoluto, $\omega_{ao}(\overrightarrow{G})$, é a ordem do maior subgrafo \overrightarrow{H} de \overrightarrow{G} tal que $\chi_o(\overrightarrow{H}) = |V(\overrightarrow{H})|$. Neste trabalho mostramos que decidir se $\omega_{ao}(\overrightarrow{G}) \leq k$ é um problema NP-completo e que não existe um algoritmo aproximativo de tempo polinomial com um fator $n^{1-\varepsilon}$ para todo $\varepsilon > 0$, a não ser que P = NP.

1. Introdução

O problema da coloração orientada foi introduzido independentemente na literatura por meio dos trabalhos [Raspaud e Sopena 1994] e [Courcelle 1994]. O trabalho de Sopena [Sopena 2016] faz uma revisão dos principais resultados do problema. Nos últimos anos os parâmetros número clique orientado relativo e absoluto de um grafo orientado \overrightarrow{G} , denotados respectivamente por $\omega_{ro}(\overrightarrow{G})$ e $\omega_{ao}(\overrightarrow{G})$, têm ganhado atenção por serem limites inferiores para o número cromático orientado $\chi_o(\overrightarrow{G})$, ou seja, $\omega_{ao}(\overrightarrow{G}) \leq \omega_{ro}(\overrightarrow{G}) \leq \omega_{ro}(\overrightarrow{G})$.

Uma k-coloração orientada é definida pela função $\phi_{\overrightarrow{G}}\colon V(\overrightarrow{G}) \to \{1,2,\ldots,k\}$, tal que: Se $xy \in A(\overrightarrow{G})$, então $\phi_{\overrightarrow{G}}(x) \neq \phi_{\overrightarrow{G}}(y)$ e se xy, $zt \in A(\overrightarrow{G})$ e $\phi_{\overrightarrow{G}}(y) = \phi_{\overrightarrow{G}}(z)$ então $\phi_{\overrightarrow{G}}(x) \neq \phi_{\overrightarrow{G}}(t)$. O número cromático orientado, denotado por $\chi_o(\overrightarrow{G})$, é o menor k tal que \overrightarrow{G} admite uma k-coloração orientada.

No escalonamento paralelo um conjunto com n tarefas $V = \{J_1, J_2, \ldots, J_n\}$ é dado como uma entrada mais uma relação de precedência $\overrightarrow{E} \subset \{J_iJ_k \mid i,k \in \{1,2,\ldots,n\}\}$, significando que a tarefa J_k é executada somente após a tarefa J_i ter sido

executada. O makespan é o número mínimo de vezes necessário para concluir o escalonamento com a execução de todas as tarefas. O número cromático orientado $\chi_o(\overrightarrow{G})$, do grafo $\overrightarrow{G} = (V, \overrightarrow{E})$ é exatamente o valor do makespan.

Dados $x,y\in V(\overrightarrow{G})$ a distância orientada $\overrightarrow{d}_{\overrightarrow{G}}(x,y)=\min\{k,\infty\}$, onde k é o número de arcos no menor caminho de x para y. A distância orientada fraca $\overline{d}_{\overrightarrow{G}}(x,y)=\min\{\overrightarrow{d}_{\overrightarrow{G}}(x,y),\overrightarrow{d}_{\overrightarrow{G}}(y,x)\}$.

Uma clique orientada relativa $R\subseteq V(\overrightarrow{G})$ de um grafo orientado \overrightarrow{G} é um conjunto de vértices tal que se $x,y\in R$, então $\overline{d}_{\overrightarrow{G}}(x,y)\leq 2$. O número clique orientado relativo, denotado por $\omega_{ro}(\overrightarrow{G})$, é a ordem da maior clique orientada relativa que é um subgrafo de \overrightarrow{G} . Uma clique orientada absoluta ou uma o-clique é um grafo orientado \overrightarrow{G} para o qual $\chi_o(\overrightarrow{G})=|V(\overrightarrow{G})|$. Observe que se \overrightarrow{G} é uma clique orientada absoluta, então se $x,y\in V(\overrightarrow{G})$, então $\overline{d}_{\overrightarrow{G}}(x,y)\leq 2$. O número clique orientado absoluto, denotado por $\omega_{ao}(\overrightarrow{G})$, é a ordem da maior clique orientada absoluta \overrightarrow{H} que é um subgrafo de \overrightarrow{G} .

O trabalho de Das et al. [Das et al. 2018] trás o primeiro resultado relativo a complexidade de ω_{ro} através do Teorema 1 para à classe dos grafos bipartidos.

Teorema 1 ([Das et al. 2018]). Se \overrightarrow{G} é um grafo orientado bipartido, então determinar $\omega_{ro}(\overrightarrow{G})$ é NP-difícil.

Neste artigo nós provamos que o problema da clique orientada absoluta é NP-completo restrito a classe dos grafos bipartidos e demonstramos que esse problema não pode ser aproximado em um fator de aproximação absoluto menor ou igual a $n^{1-\varepsilon}$, onde $n=|V(\overrightarrow{G})|$.

2. CLIQUE ORIENTADA ABSOLUTA É NP-Completo

O problema do número clique orientado absoluto foi introduzido por Klostermeyer e Mac-Gillivray [Klostermeyer e MacGillivray 2004]. Apresentamos sua definição a seguir:

Problema 2. CLIQUE ORIENTADA ABSOLUTA

Entrada: Um grafo orientado $\overrightarrow{G} = (V, E)$, com n = |V|, e um inteiro positivo k. **Pergunta:** Existe uma clique orientada absoluta \overrightarrow{K} de tamanho $|\overrightarrow{K}| \ge k$ em \overrightarrow{G} ?

Utilizamos o problema da clique definido a seguir para a demonstração da complexidade de CLIQUE ORIENTADA ABSOLUTA restrito à classe dos grafos bipartidos. A seguir apresentamos a redução utilizada para essa demonstração. Apresentamos um exemplo da Redução 4 na Figura 1. Primeiramente apresentamos alguns lemas necessários para a demonstração.

Problema 3. CLIQUE

Entrada: Um grafo G = (V, E), com n = |V|, e um inteiro k.

Pergunta: Existe uma clique $K \subseteq V$ de tamanho $|K| \ge k$ em G?

Redução 4. Dado um grafo não orientado G, construímos um grafo orientado \overrightarrow{H} fazendo $V(\overrightarrow{H}) = \{v^+, v^- : v \in V(G)\}$ e $A(\overrightarrow{H}) = \{v^+u^-, u^+v^-, v^-v^+, u^-u^+ : vu \in E(G)\}$.

Lema 5. Seja G um grafo e \overrightarrow{H} o grafo formado a partir de G com a Redução 4. Se R é uma clique orientada absoluta maximal de \overrightarrow{H} então $v^+ \in R$ se e somente se $v^- \in R$.

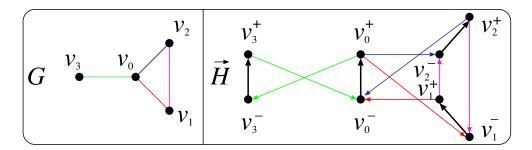


Figura 1. Exemplo da redução do Teorema 9

Corolário 6. Seja G um grafo e \overrightarrow{H} o grafo formado a partir de G com a Redução 4. Se S \acute{e} uma clique orientada absoluta de \overrightarrow{H} então existe uma clique orientada absoluta R de \overrightarrow{H} tal que $S \subseteq R$ e |R| = 2q, para algum $q \in \mathbb{N}$.

Lema 7. Seja G um grafo e \overrightarrow{H} o grafo formado a partir de G com a Redução 4. O grafo G tem uma clique de tamanho k se e somente se \overrightarrow{H} tem uma clique orientada absoluta maximal de tamanho 2k.

Corolário 8. Dada uma clique orientada absoluta S de \overrightarrow{H} . Existe um algoritmo de tempo polinomial que obtém R e C, onde R é uma clique orientada absoluta tal que $S \subseteq R, |R| = 2q$ e C é uma clique de G com |C| = q.

Demonstração. Nosso algoritmo, em tempo linear, completa os pares v^+, v^- em S obtendo R de tamanho 2q. Em seguida, para cada par v^+, v^- em R, adiciona v em C. \square

Teorema 9. O problema CLIQUE ORIENTADA ABSOLUTA é NP-completo mesmo restrito a grafos bipartidos.

Demonstração. Sabemos que o problema CLIQUE ORIENTADA ABSOLUTA pertence a NP, pois podemos checar em tempo polinomial se $R\subseteq V(\overrightarrow{G})$ é uma clique orientada absoluta de tamanho k.

Para mostrar a NP-completude utilizaremos a seguinte redução de tempo polinomial do problema CLIQUE para o problema CLIQUE ORIENTADA ABSOLUTA. Seja G um grafo e k um inteiro, formando uma instância do problema CLIQUE. Construiremos uma instância do problema CLIQUE ORIENTADA ABSOLUTA considerando \overrightarrow{H} como o grafo formado a partir de G com a Redução 4 e o inteiro 2k. Nos lembramos que como os vértices de mesmo sinal em \overrightarrow{H} não são adjacentes, temos que \overrightarrow{H} é um grafo bipartido.

Pelo Lema 7, G tem uma clique de tamanho k se e somente se \overrightarrow{H} tem uma clique orientada absoluta maximal de tamanho pelo menos 2k.

A seguir relembramos algumas definições de Garey e Johnson [Garey e Johnson 1979] que serão úteis para o próximo resultado. Seja A um algoritmo para um problema de otimização Π . Seja D_{Π} o conjunto de todas as instâncias de Π . Seja $x \in D_{\Pi}$ uma instância de Π . Seja $Opt_{\Pi}(x)$ o valor de uma solução ótima para a instância x. Seja y uma solução viável obtida pelo algoritmo A para a instância x. Seja c(y) o valor da solução viável y obtida pelo algoritmo A. O fator

 $\begin{array}{lll} \textit{de aproximação} \ \ \text{do algoritmo} \ A \ \ \acute{\text{e}} \ R_A(x,y) &=& \max_{x \in D_\Pi} \left\{ \frac{Opt_\Pi(x)}{c(y)}, \frac{c(y)}{Opt_\Pi(x)} \right\}. \ \ \text{Note} \\ \text{que } R_A(x,y) &\geq& 1; \ \text{e que } R_A(x,y) &=& 1 \ \text{se e somente se o algoritmo} \ A \ \text{obt\'em uma} \\ \text{solução} \ y \ \text{tal que } Opt_\Pi(x) &=& c(y). \ \ \text{Adicionalmente, temos que, se Π \'e um problema} \\ \text{de maximização, então} \ R_A(x,y) &=& Opt_\Pi(x)/c(y). \ \ \text{Note que CLIQUE e CLIQUE} \\ \text{Orientada Absoluta entram nesse caso. O $fator de aproximação absoluto} \ \text{de A \'e} \\ R_A &=& \inf\{r \geq 1: R_A(x,y) \leq r, \text{para todas as instâncias } x \in D_\Pi \}. \end{array}$

Teorema 10 ([Zuckerman 2006]). Se $P \neq NP$ e A é um algoritmo aproximativo polinomial para CLIQUE, então $R_A > n^{1-\varepsilon}$ para todo $\varepsilon > 0$.

Teorema 11. Se $P \neq NP$ e A é um algoritmo aproximativo polinomial para CLIQUE ORIENTADA ABSOLUTA, então $R_A > n^{1-\varepsilon}$ para todo $\varepsilon > 0$.

Demonstração. Suponha que $P \neq NP$. Seja G uma instância para CLIQUE e $\varepsilon > 0$. Assuma que existe um algoritmo de aproximação polinomial A para CLIQUE ORIENTADA ABSOLUTA com $R_A \leq n^{1-\varepsilon}$. Considere \overrightarrow{H} o grafo formado a partir de G com a Redução 4. Assim, $\frac{Opt_{o-clique}(\overrightarrow{H})}{A(\overrightarrow{H})} = R_A(\overrightarrow{H},A(\overrightarrow{H})) \leq R_A \leq n^{1-\varepsilon}$. Pelo Lema 7, temos que $Opt_{o-clique}(\overrightarrow{H}) = 2Opt_{clique}(G)$. Pelo Corolário 6 sabemos que existe uma clique orientada absoluta R em \overrightarrow{H} tal que $A(\overrightarrow{H}) \subseteq R$ e |R| = 2q, para algum $q \in \mathbb{N}$. Assim, pelo Lema 7, existe uma clique de tamanho pelo menos q em G que pode ser obtida em tempo polinomial pelo Corolário 8. Dessa forma, $\frac{Opt_{clique}(G)}{q} = \frac{2Opt_{clique}(G)}{2q} \leq \frac{Opt_{o-clique}(\overrightarrow{H})}{A(\overrightarrow{H})} = R_A(\overrightarrow{H},A(\overrightarrow{H})) \leq n^{1-\varepsilon}$, o que define uma aproximação polinomial para CLIQUE com fator de aproximação absoluto menor ou igual a $n^{1-\varepsilon}$. Pelo Teorema 10 temos que P = NP, uma contradição. Logo, não existe algoritmo de aproximação polinomial para CLIQUE ORIENTADA ABSOLUTA com fator de aproximação absoluto menor ou igual a $n^{1-\varepsilon}$. \square

Referências

- [Courcelle 1994] Courcelle, B. (1994). The monadic second order logic of graphs VI: On several representations of graphs by relational structures. *Discrete Applied Mathematics*, 54(2-3):117–149.
- [Das et al. 2018] Das, S., Prabhu, S., e Sen, S. (2018). A study on oriented relative clique number. *Discrete Mathematics*, 341(7):2049–2057.
- [Garey e Johnson 1979] Garey, M. R. e Johnson, D. S. (1979). *Computers and Intractability*, volume 174. Freeman San Francisco.
- [Klostermeyer e MacGillivray 2004] Klostermeyer, W. e MacGillivray, G. (2004). Analogues of cliques for oriented coloring. *Discussiones Mathematicae Graph Theory*, 24(3):373–387.
- [Raspaud e Sopena 1994] Raspaud, A. e Sopena, E. (1994). Good and semi-strong colorings of oriented planar graphs. *Information Processing Letters*, 51(4):171–174.
- [Sopena 2016] Sopena, É. (2016). Homomorphisms and colourings of oriented graphs: An updated survey. *Discret. Math.*, 339(7):1993–2005.
- [Zuckerman 2006] Zuckerman, D. (2006). Linear degree extractors and the inapproximability of max clique and chromatic number. In *Proceedings of the thirty-eighth annual ACM symposium on Theory of computing*, pages 681–690.