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Abstract. We investigate the total coloring of fullerene nanodiscs, a subclass of
cubic planar graphs with girth 5 arising in Chemistry, motivated by a conjecture
about the nonexistence of a Type 2 cubic graph of girth at least 5. We give a
combinatorial description and then a conformable coloring for an infinite family
of fullerene nanodiscs.

1. The large girth Type 1 conjecture
A k-total coloring of a graph G is a color assignment from set E ∪ V , where E denotes
the set of edges and V denotes the set of vertices of the graph, such that distinct colors are
assigned to: every pair of vertices that are adjacent; all edges that are adjacent; and each
vertex and its incident edges. The total chromatic number χ′′(G) is the smallest natural
k for which G admits a k-total coloring. Behzad and Vizing [Behzad 1965, Vizing 1964]
independently conjectured the Total Coloring Conjecture (TCC) that for any simple graph
G, we have χ′′(G) ≤ ∆(G) + 2. If χ′′(G) = ∆(G) + 1, then the graph is Type 1; if
χ′′(G) = ∆(G) + 2, then the graph is Type 2. The TCC has been verified for some
particular classes of graphs, including cubic graphs [Kostochka 1996].

Figure 1. (a) A Type 2 girth 3 cubic graph; (b) a Type 2 girth 4 cubic graph.

Every known Type 2 cubic graph has a girth 3 or 4 (See Figure 1). So, it is natural
to think that there are no Type 2 cubic graphs with girth at least 5. Thus the following
conjecture was proposed [Brinkmann et al. 2015]:

Conjecture 1. There is no Type 2 cubic graph with girth at least 5.

We will then define a special vertex coloring which is a necessary condition for a
graph to be Type 1.



Lemma 1 ([Chetwynd and Hilton 1988]). Let G be a regular graph. G is conformable if
and only if it has a vertex coloring with ∆ + 1 colors and each color class has the same
parity of |V (G)|.

By Lemma 1, a necessary step towards proving that a cubic graph is Type 1 is
to define a 4-vertex coloring where the cardinality of each vertex color class is even.
Deciding whether an arbitrary graph is Type 1 is NP-complete [Sánchez-Arroyo 1989],
even restricted to cubic graphs. Therefore, extending a conformable coloring to a
(∆ + 1)-total coloring is also NP-complete.

Lemma 2 ([Chetwynd and Hilton 1988]). If G is a Type 1 graph, then G is conformable.

2. The nanodiscs are graphs of girth 5
The fullerene nanodiscs, or nanodiscs Dr of radius r ≥ 2, are structures composed of
two identical flat covers, made with only hexagonal faces, connected by a strip along
their borders constructed with additional 12 pentagonal faces. Figure 2 shows nanodiscs,
where we highlighted with blue color in the connecting strip the 12 pentagonal faces.

The sequence {1, 6, 12, 18, ..., 6(r − 1), 6r, 6(r − 1), ..., 18, 12, 6, 1} provides the
amount of faces on each layer of the nanodisc graph Dr. The 12 pentago-
nal faces are distributed in the central layer among its 6r faces with the other
(6r − 12) hexagonal faces [Nicodemos 2017]. The auxiliary cycle sequence
{C6, C18, . . . , C12r−6, C12r−6, . . . , C18, C6} provides the sizes of the auxiliary cycles that
define the layers. A nanodisc contains 12r2 vertices, 18r2 edges and has girth 5.

3. All even radius nanodiscs are conformable
A strategy to color the vertices of Dr is to take advantage that the auxiliary cycles have
even length and color alternately with colors 1 and 2 the cycle C6 defining the inner layer,
with colors 3 and 4 the next cycle C18, and so on. The strategy does not rely on the unicity
of Dr, and defines for even radius a 4-vertex coloring that is conformable. See Figure 2.

Figure 2. Conformable colorings for D2 and D4, respectively.
Theorem 1 ([da Cruz et al. 2021]). Every nanodisc with even radius admits a con-
formable coloring.

Proof. In a Dr with even r, consider the 4-vertex coloring that gives colors 1 and 2 to
the outer cycle C6, colors 3 and 4 to the next cycle C18, until we reach the central layer,
where colors 3 and 4 are given to cycle C12r−6 and colors 1 and 2 are given to the next
cycle C12r−6, continue in this fashion until colors 3 and 4 are given to the inner cycle C6.
There are 2r cycles, and each color appears in r cycles. Each color class has the same
even number 3r2 of vertices.



Figure 3. (a) A 4-vertex coloring that does not give a conformable coloring of D3;
(b) an optimal 3-vertex coloring that gives a conformable coloring of D3.

Note that for r odd this 4-vertex coloring is not conformable, since 3r2 generates
an odd number of vertices for each color class (See Figure 3(a)). Thus, seeking to prove
that all Dr nanodiscs are conformable, we further studied the D3 nanodisc and obtained
an optimal 3-vertex coloring that gives a conformable 4-vertex coloring, since each of
the three color classes has an even number of vertices, and the fourth color class has 0
elements (See Figure 3(b)).

Theorem 2 ([da Cruz et al. 2021]). The nanodisc D3 is conformable.

Figure 4. 3-vertex colorings of the two non-isomorphic instances of D5.

The optimal 3-vertex coloring strategy for D3 consists of coloring the auxiliary
cycles, except for the two cycles of the center layer, using two colors alternately, avoiding
color conflict in the vertices that are extremes of radial edges between consecutive
auxiliary cycles. In the cycles C12r−6 defining the central layer, we introduce a third color
by choosing six vertices in each cycle, thus ensuring the parity of this color class and the
other color classes, where the fourth color class has 0 vertices. Recently, we have found
two non-isomorphic instances for the fullerene nanodisc D5. We verified the coloring
strategy described above in both, which culminated in the following result (See Figure 4).

Theorem 3. The two non-isomorphic instances of nanodisc D5 are conformable.



4. Current work
Our current goal is to generalize the 3-vertex coloring strategy that gives a conformable
coloring of D3 presented in Figure 3(b) and of D5 presented in Figure 4 to an arbitrary
nanodisc of odd radius. We were not able to extend the conformable vertex colorings
defined in Section 3 for a 4-total coloring of those fullerene nanodiscs. We need to further
investigate the structure of the class, looking for a suitable conformable vertex coloring
that extends to a 4-total coloring of Dr, in order to prove that every fullerene nanodisc is
Type 1, as has already been proven for D2 [da Cruz et al. 2021]. See Figure 5.

Figure 5. A 4-total coloring of D2.
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