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Abstract. A total coloring assigns colors to the vertices and edges of a graph
without conflicts and it is called equitable if the cardinalities of any two color
classes differ by at most 1. In 2020, Stemock considered equitable total color-
ings of small cubic graphs and conjectured that every 4-total coloring of a cubic
graph with less than 20 vertices is equitable. We present counterexamples to Ste-
mock’s conjecture. We determine that every 4-total coloring must be equitable
on all cubic graphs with 6, 8, 10, and 14 vertices. On the other hand, for cubic
graphs with 12, 16, and 18 vertices, we characterize the color class configura-
tions that might allow a non-equitable 4-total coloring. We prove that a cubic
graph of 12 vertices is the smallest counterexample to Stemock’s conjecture.

1. Stemock’s Conjecture
A total coloring of a graph G is a color assignment to the set of all elements E(G) ∪
V (G), where E(G) denotes the set of edges and V (G) denotes the set of vertices of the
graph, in a set of colors C = {c1, c2, ..., ck}, k ∈ N, so that different colors are assigned
to: every pair of vertices that are adjacent, all edges that are adjacent, and, each vertex
and its incident edges. Behzad and Vizing [Behzad 1965, Vizing 1964] independently
conjectured the Total Coloring Conjecture (TCC) that for any simple graph G, we have
χ′′(G) ≤ ∆(G) + 2. If χ′′(G) = ∆(G) + 1, then the graph is called Type 1; if χ′′(G) =
∆(G) + 2, then the graph is called Type 2. A total coloring is called equitable if the
cardinalities of any two color classes differ from at most 1.

A graph G is called regular of degree r, or r-regular when all its vertices have
the same degree r. The 3-regular graphs are called cubic graphs. In 2020, Stemock
established a conjecture that motivated our work [Stemock 2020].
Conjecture 1 ([Stemock 2020]). Every 4-total coloring of a cubic graph G is equitable,
given that the number of vertices of G is less than 20.

This upper bound was motivated by the Type 1 graph R with 20 vertices found
in [Dantas et al. 2016] that does not have an equitable total coloring with 4 colors (see
Figure 1). Note that the color 4 appears 14 times and the others colors appear 12 times.

After some research, we concluded that Conjecture 1 is false. We reached this con-
clusion by consulting two articles. In [Chetwynd and Hilton 1988], the authors present a
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Figure 1. A non-equitable 4-total coloring of graph R.

method to obtain the total coloring of circular ladder graphs that generates a non-equitable
4-total coloring to the circular ladder graphs with 12 and 18 vertices. Subsequently, we
were able to find equitable 4-total colorings for those graphs, see Figures 2 and 3.

Figure 2. Circular ladder graphs L12 and L18 with non-equitable 4-total colorings.

Figure 3. Circular ladder graphs L12 and L18 with equitable 4-total colorings.

We continued to study which cubic graphs with less than 20 verified Stemock’s
conjecture. Thus, we obtained the results that will be presented in the next two sections.

In addition, in all the results obtained, we used the conformable condition. Let G
be a regular graph. G is conformable if and only if it has a vertex coloring with ∆(G)+ 1
colors and each color class has the same parity of |V (G)|. If G is a Type 1 graph, then G
is conformable [Chetwynd and Hilton 1988].



2. Our all Equitable Results, when the graph has 6, 8, 10 or 14 vertices
We analyze the number of elements of a cubic graph, when the graph has less than 20
vertices, according to Stemock’s conjecture. For each case, we study the largest total
independent set of elements. A set of vertices A is called total independent set if no two
vertices in set A are adjacent to each other, no two edges in set A share a vertex, and no
vertex is the extreme of an edge in set A. Note that K4 and the Möbius ladder M6 are
both Type 2 and both have an equitable 5-total coloring. The circular ladder L6 has an
equitable 4-total coloring [Dantas et al. 2016].
Theorem 1 ([Adauto 2022]). All 4-total colorings of Type 1 cubic graphs with 6, 8, 10,
and 14 vertices are equitable.

Proof. For any number of vertices in this theorem, the proof strategy is the same. We
divide the number of elements in the graph by 4 and check the configuration of the color
classes of an equitable 4-total coloring. Next, we take the color class with the highest
cardinality as a parameter and assume that there is no total independent set greater than
this color class. If this is verified, we guarantee that the total coloring is equitable. To
give an idea of the argument, we consider the case with 10 vertices.

Note that a cubic graph of 10 vertices has 15 edges. Thus, in every equitable 4-total
coloring of these graphs each color class has exactly 7, 6, 6, and 6 elements respectively.
Furthermore, the number of vertices in each color class will necessarily be even, since
the graph is conformable. If there is a total independent set of 8 elements or two disjoint
total independent sets of 7 elements it would be possible to assign a color to these sets and
the coloring might not be equitable. However, we will prove that on a cubic graph of 10
vertices a total independent set of 8 elements does not exist and that two total independent
sets of 7 elements cannot exist simultaneously. We divide the proof into cases according
to the number of elements of each kind in a total independent set of 8 elements or two total
independent sets of 7 elements. The possible cases are: 8 vertices and 0 edges, 6 vertices
and 2 edges, 4 vertices and 4 edges, 2 vertices and 6 edges, 0 vertices and 8 edges, two
disjoint total independent sets with 7 elements: 4 vertices and 3 edges each.

For instance, for the case with 6 vertices and 2 edges, there are 18 edges joining the
set of 6 vertices to the remaining set of 4 vertices. But these 4 vertices have already one
neighbor inside this set, therefore, this set can only receive at most 8 edges, a contradic-
tion. Furthermore, for the case with two disjoint total independent sets with 7 elements,
consider one total independent set with 7 elements consisting of vertices v1, v2, v3, v4 and
the edges e1, e2, e3 where the vertices a1, a2, a3, a4, a5 and a6 are the extremes of the
edges e1, e2 and e3 respectively (see Figure 4). For the other disjoint total independent set
with 7 elements we must select two vertices among one of the extremes of each edge e1,
e2, and e3 together with 5 edges defining a matching, which is impossible.

3. Our non-Equitable Results, when the graph has 12, 16 or 18 vertices
We first make a study of cubic graphs with 12 or 18 vertices, in light of the counterexam-
ples L12 and L18 of the Stemock’s conjecture. Please see in Figure 2. We were able
to characterize the color class configurations that might allow a non-equitable 4-total
coloring for all graphs with 12 or 18 vertices. Although the 4-total coloring given in
[Chetwynd and Hilton 1988] for L16 is equitable, to consider all small graphs up to 20



Figure 4. Diagram of case with 4 vertices and 3 edges in a total independent set
of 7 elements, considering a graph with n = 10 vertices.

vertices, we were able to characterize the color class configurations that might allow a
non-equitable 4-total coloring for all graphs with 16 vertices as well.
Theorem 2 ([Adauto 2022]). The color classes configurations that might allow a non-
equitable 4-total coloring of a cubic graph of 12, 16, 18 vertices are respectively 8, 8, 8,
6; 12, 12, 12, 9 or 12, 12, 10, 10; 11, 10, 10, 9.

4. Current Work
When we verified that the Stemock’s conjecture was false, we asked three questions and
only answered one of them. Our goal is to answer the remaining two.
Question 1. Does every Type 1 cubic graph, with less than 20 vertices, have at least one
equitable 4-total coloring?

So far, for all cubic graphs with less than 20 vertices that we have obtained a
non-equitable 4-total coloring, we have also obtained an equitable 4-total coloring.
Question 2. Is the graph L12 the smallest counterexample to the Conjecture 1?

Yes, it is the smallest. This is verified by the theorems obtained.
Question 3. What is the largest value of n, such that every Type 1 cubic graph with n
vertices is such that all of its 4-total colorings are equitable?

For now, the largest n we have obtained for these conditions is 14. We seek in
future works to answer whether in fact it is the greatest. Furthermore, for cubic graphs
that can admit a non-equitable 4-total coloring, we want to determine the color class
configurations of these colorings.
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