
Heavy and leafy trees*

Cristina G. Fernandes1, Carla N. Lintzmayer2, Mário César San Felice3

1Departamento de Ciência da Computação, Universidade de São Paulo, Brazil

2Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil

3Departamento de Computação, Universidade Federal de São Carlos, Brazil

cris@ime.usp.br, carla.negri@ufabc.edu.br, felice@ufscar.br

Abstract. The MAXIMUM WEIGHTED LEAF TREE problem consists of, given
a connected graph G and a weight function w : V (G) → Q+, finding a tree in G
whose weight on the leaves is maximized. The variant that requires the tree to
be spanning is at least as hard to approximate as the maximum independent set
problem. If all weights are unitary, it turns into the well-known problem of find-
ing a spanning tree with maximum number of leaves, which is NP-hard, but is in
APX. No further innapproximability result is known for MAXIMUM WEIGHTED
LEAF TREE, and the best approximation is an O(lg n)-approximation. In this
paper, we present an O(lgW )-approximation where W is the maximum weight
divided by the minimum weight that appears on the vertices.

1. Introduction

The MAXIMUM WEIGHTED LEAF TREE problem is that of, given a connected (undi-
rected) graph G and a weight function w : V (G) → Q+, finding a tree T in G such
that the weight of the leaves, which are vertices of degree 1, of T is maximized. When
w(v) = 1 for all v ∈ V (G), one can observe that such an optimal tree can al-
ways be extended to be spanning with the same weight. The variant of the problem
with uniform weights and that requires the tree to be spanning is known as the MAX-
IMUM LEAF SPANNING TREE problem, which is NP-hard [Garey and Johnson 1979]
and also APX-hard [Galbiati et al. 1994]. The best known result for it is a 2-
approximation algorithm proposed by Solis-Oba [Solis-Oba 1998, Solis-Oba et al. 2017].
The directed version was shown to be NP-hard [Alon et al. 2009] and MaxSNP-
hard [Schwartges et al. 2011] on Directed Acyclic Graphs (DAGs). For the directed
version there is a 92-approximation algorithm [Daligault and Thomassé 2009] and a 3

2
-

approximation for DAGs [Fernandes and Lintzmayer 2021].

Interestingly, if one has a vertex-weighted graph and requires a spanning
tree whose weight on leaves is maximum, then the problem becomes at least as
hard to approximate as the problem of finding a maximum independent set in a
graph [Drescher and Vetta 2010], that is, it is not approximable within n1−ε for any ε > 0,
unless P = NP, where n is the number of vertices in the graph. On the other hand, for the
MAXIMUM WEIGHTED LEAF TREE problem, there exists an O(lg n)-approximation for
general graphs [Gandhi et al. 2018].

*C. G. Fernandes was partially supported by CNPq (Proc. 308116/2016-0 and 423833/2018-9). C. N.
Lintzmayer was partially supported by CNPq (Proc. 428385/2018-4).



The O(lg n)-approximation presented by Gandhi, Hajiaghayi, Kortsarz, and Puro-
hit [Gandhi et al. 2018] for the MAXIMUM WEIGHTED LEAF TREE problem is in fact
for directed graphs, but the authors mention that it is applicable for undirected graphs as
well. Their approach starts by reducing the problem on general weights to the MAXIMUM
{0,1}-WEIGHTED LEAF TREE problem, when the weights are only 0 or 1. Then, they
show that any α-approximation algorithm for the problem when the weights are 0 or 1 is
an (α lg n)-approximation for general weights.
Lemma 1.1 ([Gandhi et al. 2018]). If there is an α-approximation for the MAXIMUM
{0,1}-WEIGHTED LEAF TREE problem, then there exists an O(α lg n)-approximation
for the MAXIMUM WEIGHTED LEAF TREE problem (with general weights).

At last, they show that the MAXIMUM {0,1}-WEIGHTED LEAF TREE problem
can be reduced to the MAXIMUM LEAF SPANNING TREE (unweighted) preserving the
approximation ratio.
Lemma 1.2 ([Gandhi et al. 2018]). Given a digraph G with {0, 1}-vertex weights, we can
construct an unweighted digraph G′ in polynomial time so that G′ has a solution for the
MAXIMUM LEAF SPANNING TREE problem with at least φ leaves if and only if G has a
solution for the MAXIMUM {0,1}-WEIGHTED LEAF TREE problem of weight at least φ.

Since both directed and undirected versions of MAXIMUM LEAF SPANNING
TREE have constant-factor approximation algorithms, their O(lg n)-approximation result
follows.

Another interesting result given by these authors is a relation between MAXIMUM
WEIGHTED LEAF TREE and the CONNECTED MAXIMUM CUT problem. In the latter,
one is given a graph G and a weight function w : E(G) → Q+ and wants to find a set
S ⊂ V (G) such that the weight of edges in the cut (S, V (G) \ S) is maximized and
G[S] is connected. They showed that any α-approximation algorithm for the MAXIMUM
WEIGHTED LEAF TREE problem provides a 4α-approximation algorithm for the CON-
NECTED MAXIMUM CUT problem.

While there is an O(lg n)-approximation for the MAXIMUM WEIGHTED LEAF
TREE problem, to the best of our knowledge, there is no result of inapproximability for it
in the literature. Thus, one might wonder whether there is a constant-factor approximation
for this problem. Notice that this would also imply a constant-factor approximation for
the CONNECTED MAXIMUM CUT problem.

We present some preliminary results we obtained on the MAXIMUM WEIGHTED
LEAF TREE problem. In Section 2, we show that, by restricting attention to instances
where weights are powers of 2, we lose at most a factor of 2 on the approximation ratio.
In Section 3, we present an approximation for this restricted problem. Its ratio depends
on the maximum exponent of the powers of 2 that appear as weights on the vertices. As a
consequence, we derive a 2(2 + lgW )-approximation for MAXIMUM WEIGHTED LEAF
TREE, where W is the maximum weight of a vertex divided by the minimum weight of a
vertex. This becomes a constant approximation for instances in which W is bounded by
a constant.

2. General weights
In this section, we show how approximation algorithms for instances with general weights
can be obtained through instances whose weights are only powers of 2.



We start with some notation. For a tree T , let L(T ) be the set of leaves of T
and w(T ) denote w(L(T )) =

∑
v∈L(T ) w(v). We use opt(G,w) to denote the cost of

an optimal solution for the MAXIMUM WEIGHTED LEAF TREE problem, that is, w(T ∗),
where T ∗ is an optimal solution for the instance ⟨G,w⟩. We also write opt(G) to denote
the number of leaves in an optimal solution for the MAXIMUM LEAF SPANNING TREE
problem, which is the amount of leaves in an optimal solution for G.

Let ⟨G,w⟩ be an instance of the MAXIMUM WEIGHTED LEAF TREE problem.
Let wmin := min{w(v) : v ∈ V (G)}. We create a new function w′ by setting w′(v) as the
highest power of 2 which is smaller than or equal to w(v)/wmin.

Suppose there is an α-approximation algorithm for the MAXIMUM WEIGHTED
LEAF TREE problem when the weights are powers of 2 and let T be the solution produced
by this algorithm for ⟨G,w′⟩. If T ∗ is an optimal solution for ⟨G,w⟩, then note that

w(T ) ≥ wminw
′(T ) ≥ wmin

opt(G,w′)

α
≥ wmin

w′(T ∗)

α
>

w(T ∗)

2α
=

opt(G,w)

2α
.

Thus any α-approximation for instances where the weights are integers and pow-
ers of 2 yields a 2α-approximation for general weights.

3. An approximation for weights that are powers of 2

We now restrict our attention to weight functions w : V (G) → {1, 2, 4, . . . , 2k} for some
k ≥ 0, and show a (k + 2)-approximation in this case.

Theorem 3.1. There is a (k+2)-approximation algorithm for the MAXIMUM WEIGHTED
LEAF TREE problem when the weights of the vertices are in {1, 2, 4, . . . , 2k}, for k ≥ 0.

Proof. The result follows by induction on k. If k = 0, then return the tree produced
by the 2-approximation algorithm for the MAXIMUM LEAF SPANNING TREE problem
over G [Solis-Oba 1998, Solis-Oba et al. 2017].

Now let k ≥ 1 and denote by ℓ2k(T ) the amount of leaves of weight 2k of any
tree T . Build w′ : V (G) → {0, 1} such that w′(v) = 1 if w(v) = 2k and w′(v) = 0 oth-
erwise. Let T ′ be the tree returned by the 2-approximation algorithm for the MAXIMUM
{0,1}-WEIGHTED LEAF TREE problem over ⟨G,w′⟩ (Lemma 1.2). Build w′′ : V (G) →
{1, 2, . . . , 2k−1} such that w′′(v) = 2k−1 if w(v) = 2k and w′′(v) = w(v) otherwise.
Let T ′′ be the tree returned by the (k−1+2)-approximation algorithm existing by induc-
tion. The algorithm returns the tree with cost max{w(T ′), w(T ′′)}.

Note that, by definition, w(T ) = w′′(T ) + 2k−1ℓ2k(T ). Let T ∗ be an optimal
solution for ⟨G,w⟩. Next, we analyze the relations between this term 2k−1ℓ2k(T ) and a
fraction of the cost w(T ∗).

If 2k−1ℓ2k(T
∗) ≥ w(T ∗)

k+2
= 1

k+2
opt(G,w), then the tree T ′ is such that

w(T ′) ≥ 2kw′(T ′) ≥ 2k
opt(G,w′)

2
≥ 2k−1w′(T ∗) = 2k−1ℓ2k(T

∗) ≥ 1

k + 2
opt(G,w) ,

where we used the fact that w′(T ) = ℓ2k(T ) for any tree T .



Otherwise, if 2k−1ℓ2k(T
∗) < w(T ∗)

k+2
= 1

k+2
opt(G,w), then the tree T ′′ is such that

w(T ′′) ≥ w′′(T ′′) ≥ opt(G,w′′)

k − 1 + 2
≥ w′′(T ∗)

k + 1
=

w(T ∗)− 2k−1ℓ2k(T
∗)

k + 1

>
w(T ∗)− w(T ∗)

k+2

k + 1
=

(k + 2)w(T ∗)− w(T ∗)

(k + 1)(k + 2)
=

w(T ∗)

k + 2
=

1

k + 2
opt(G,w) ,

where we used the fact that w(T ) = w′′(T ) + 2k−1ℓ2k(T ) for any tree T .

Corollary 3.2. There exists a 2(2 + lgW )-approximation algorithm for the MAXIMUM
WEIGHTED LEAF TREE problem on general weights, where W is the maximum weight
of a vertex divided by the minimum weight of a vertex in the input.

Proof. It follows from Theorem 3.1 and from the result on Section 2.

4. Remarks
The O(lg n)-approximation from the literature also reduces the problem to MAXIMUM
{0,1}-WEIGHTED LEAF TREE instances: it partitions the vertices of the graph by di-
viding the range of weights into O(log n) intervals and, for each interval, it creates an
instance with weight 1 only on the vertices with weight in this interval. Our algorithm
rounds the weights to powers of two and, for each such power, creates an instance with
weight 1 on the vertices with weight greater than or equal to this power. We are analyzing
the similarities and differences between the two algorithms, trying to improve on them.

References
Alon, N., Fomin, F., Gutin, G., Krivelevich, M., and Saurabh, S. (2009). Spanning directed trees with many

leaves. SIAM Journal on Discrete Mathematics, 23(1):466–476.
Daligault, J. and Thomassé, S. (2009). On Finding Directed Trees with Many Leaves. In International

Workshop on Parameterized and Exact Computation, volume 5917 of Lecture Notes in Computer Sci-
ence, pages 86–97.

Drescher, M. and Vetta, A. (2010). An Approximation Algorithm for the Maximum Leaf Spanning Ar-
borescence Problem. ACM Transactions on Algorithms, 6(3).

Fernandes, C. G. and Lintzmayer, C. N. (2021). Leafy spanning arborescences in DAGs. Discrete Applied
Mathematics. In press. Available also at https://arxiv.org/abs/2007.07660.

Galbiati, G., Maffioli, F., and Morzenti, A. (1994). A short note on the approximability of the maximum
leaves spanning tree problem. Information Processing Letters, 52(1):45–49.

Gandhi, R., Hajiaghayi, M. T., Kortsarz, G., Purohit, M., and Sarpatwar, K. (2018). On maximum leaf trees
and connections to connected maximum cut problems. Information Processing Letters, 129:31–34.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability. W.H. Freeman and Co., New York.
Schwartges, N., Spoerhase, J., and Wolff, A. (2011). Approximation algorithms for the Maximum Leaf

Spanning Tree Problem on acyclic digraphs. In 9th Workshop on Approximation and Online Algorithms
(WAOA), volume 7164 of Lecture Notes in Computer Science, pages 77–88.

Solis-Oba, R. (1998). 2-approximation algorithm for finding a spanning tree with maximum number of
leaves. In Proceedings of the European Symposium on Algorithms (ESA), volume 1461 of Lecture Notes
in Computer Science, pages 441–452.

Solis-Oba, R., Bonsma, P., and Lowski, S. (2017). A 2-Approximation Algorithm for Finding a Spanning
Tree with Maximum Number of Leaves. Algorithmica, 77:374–388.

https://arxiv.org/abs/2007.07660

	Introduction
	General weights
	An approximation for weights that are powers of 2
	Remarks

