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Abstract. Seymour’s Second Neighborhood Conjecture (SNC) says that every
oriented graph contains a vertex whose second neighborhood is at least as large
as its first neighborhood. We prove that asymptotically almost surely (a.a.s.)
every orientation of the binomial random graph G(n, p) satisfies the SNC if
n4p6 → 0. We also show that if p ∈ (0, 2/3), then a.a.s. a uniformly-random
orientation of G(n, p) satisfies the SNC, settling it for almost every labeled ori-
ented graph.

Resumo. A Conjectura da Segunda Vizinhança de Seymour (SNC) diz que todo
grafo orientado contém um vértice cuja segunda vizinhança tem pelo menos
tantos vértices quanto sua primeira vizinhança. Nós provamos que assintori-
camente quase certamente (a.q.c.) toda orientação do grafo aleatório bino-
mial G(n, p) satisfaz à SNC quando n4p6 → 0. Mostramos também que se
p ∈ (0, 2/3) é uma constante, então a.q.c. uma orientação uniformemente
aleatória de G(n, p) satisfaz à SNC, confirmando a conjectura para quase todo
grafo orientado rotulado.

An oriented graph D is a directed graph (or digraph) obtained from a simple
graph G by assigning a direction to each of its edges (i.e., D contains no loops, parallel
arcs, nor directed cycles of length 2); we also say that D is an orientation of G. Given
a positive integer i, the i-th neighborhood of a vertex u, denoted by N i(u), is the set of
vertices v for which a shortest directed path from u to v has precisely i arcs. A Seymour
vertex (see [Seacrest 2015]) is a vertex u for which |N2(u)| ≥ |N1(u)|. In 1990, Seymour
conjectured that every oriented graph contains such a vertex (see [Dean and Latka 1995]).

Conjecture 1. Every oriented graph contains a Seymour vertex.

Conjecture 1, also known as Seymour’s Second Neighborhood Conjecture (SNC),
has been intensively studied (see, e.g., [Fidler and Yuster 2007, Seacrest 2015,
Chen et al. 2003]). Notably, it was confirmed for tournaments (orientations of complete



graphs) using two distinct approaches [Fisher 1996, Havet and Thomassé 2000]; and it
was also studied in a random digraph model (in which each ordered pair is independently
chosen to be an arc with probability p < 1/2) [Cohn et al. 2016].

Indeed, the study of random analogues of combinatorial problems has been a fruit-
ful area of research (see [Conlon and Gowers 2016]). We study Conjecture 1 for arbitrary
orientations of the (undirected) binomial random graph G(n, p), defined as the random
graph with vertex set {1, . . . , n} in which each pair of vertices appears independently as
an edge with probability p. Note that Conjecture 1 holds when G(n, p) is sufficiently
sparse since G(n, p) asymptotically almost surely (a.a.s.) has an isolated vertex whenever
np ≤ (1− ε) log n. Our first result (see Section 1), extends this to a larger range of p.

Theorem 2. Let p : N → (0, 1). If n4p6 → 0, then a.a.s. every orientation of G(n, p)
contains a Seymour vertex.

We also confirm that Conjecture 1 holds a.a.s. when 0 < p < 2/3 and D is an ori-
entation ofG(n, p) whose minimum outdegree δ+(D) is large, implying that almost every
orientation of almost every n-vertex graph contains a Seymour vertex (see Section 2).

Lemma 3. If p ∈ (0, 2/3) is a fixed constant, then a.a.s. every orientation D of G(n, p)

which satisfies δ+(D) ≥
√

8n3/2/(1− 3
2
p) has a Seymour vertex.

1. Wheel-free graphs
A wheel is a graph obtained from a cycle C by adding a new vertex adjacent to all vertices
in C. We prove Theorem 2 by showing that sufficiently sparse random graphs are wheel-
free, and then arguing that orientations of wheel-free graphs contain a Seymour vertex.

Lemma 4. If p, ε ∈ (0, 1) and n4p6 < ε/16, then P
(
G(n, p) is wheel-free

)
≥ 1− ε.

Proof. Since n4p6 < ε/16, we have that

np2 < (εp2/16)1/4 < 1/2. (1)

Let Xk be the number of wheels of order k in G(n, p), and let X =
∑n

k=4Xk be the
number of wheels in G(n, p). We have

EX =
n∑
k=4

EXk =
n∑
k=4

(
n

k

)
k

(k − 1)!

2(k − 1)
p2(k−1)

< n
n∑
k=4

(np2)k−1 = n4p6
n−4∑
k=0

(np2)k
G.P.
<

n4p6

1− np2
(1)
< ε. (2)

Where in (2) we used the standard estimate for the sum of a geometric progression (G.P.)
with ratio np2 < 1. By Markov’s inequality, we have P(X ≥ 1) ≤ (EX)/1 < ε.

To show that every orientation of a wheel-free graph has a Seymour vertex, we
prove a slightly stronger result. A subset A of V (D) is cornering if it induces a digraph
with minimum outdegree 0; we say that a digraph D is locally cornering if N1(u) is
cornering for every u ∈ V (D). In particular, if D is locally cornering and u is a vertex
of minimum outdegree in D, then a vertex v with outdegree 0 in N1(u) has at least
δ+(D) = |N1(u)| outneighbors outside N1(u), and hence u is a Seymour vertex.



Lemma 5. Every locally cornering digraph has a Seymour vertex.
Lemmas 4 and 5 yield the following corollary, which implies Theorem 2.

Corollary 6. For all positive p, ε ∈ (0, 1) and all n ∈ N, if n4p6 < ε/16, then the
probability that every orientation of G(n, p) has a Seymour vertex is at least 1− ε.

Proof. Note that every orientation of a wheel-free graph is locally cornering, because in
such a graph the neighborhood of every vertex is a forest, and every forest has a vertex
with no outneighbors. The result is then immediate from Lemmas 4 and 5.

2. Orientations with prescribed minimum degree
In this section we show that if p is a constant in (0, 2/3), then a.a.s. a typical orientation of
G(n, p) has a Seymour vertex. More precisely, we use the following Chernoff-type bound
to show that orientations ofG(n, p) with minimum degree Ω(n1/2) have a Seymour vertex.

Lemma 7 (Chernoff inequality). Let X be a binomial random variable B(N, p), i.e., the
number of successes inN mutually independent experiments with success p ∈ (0, 1) each.
For all t > 0 we have P

(
|X − EX| > t

)
< 2 exp

( −t2
2(σ2+t/3)

)
, where σ2 = Np(1 − p)

denotes the variance of X .
For X, Y ⊆ V (G), let e(X, Y ) =

∣∣{e ∈ E(G) : |X ∩ e| = |Y ∩ e| = 1}
∣∣

and e(X) = e(X,X). The following facts of G(n, p) are easily derived from Lemma 7.

Fact 8. For all p : N→ (0, 1), the following properties hold a.a.s. for G = G(n, p).
(i) For every X ⊆ V (G), we have∣∣∣∣ e(X)−

(
|X|
2

)
p

∣∣∣∣ <
√
n2 + 6p(1− p)

(
|X|
2

)
n+ n < 4n3/2;

(ii) For every X, Y ⊆ V (G), we have∣∣∣ e(X, Y )− |X||Y |p
∣∣∣ <√n2 + 6p(1− p)|X||Y |n+ n < 4n3/2;

(iii) For every v ∈ V (G), we have∣∣ deg(v)− np
∣∣ ≤√log2 n+ 6p(1− p)n log n+ log n < 4

√
n log n.

We can now present the proof of our second main result.

Proof of Lemma 3. Let v be a vertex of minimum degree in D. Let A := N1(v) and
B := N2(v). We prove that |A| ≤ |B|, which means v is a Seymour vertex. Suppose to
the contrary that |B| < |A|. Note that by the choice of v we have (1 − 3

2
p)|A|2 ≥ 8n3/2.

Let ~e(A,B) denote the number of arcs oriented from A to B. By Fact 8 (i) we have

~e(A,B) =
∑
a∈A

deg+(a)−e(A) ≥ |A|2−
(
|A|2p

2
+ 4n3/2

)
=
(

1− p

2

)
|A|2−4n3/2, (3)

and by Fact 8 (ii) we have

~e(A,B) ≤ e(A,B) ≤ |A||B|p+ 4n3/2 < |A|2p+ 4n3/2. (4)

Combining (3) and (4), we obtain 8n3/2 > (1− 3
2
p)|A|2, a contradiction.



To conclude, we verify Conjecture 1 for random orientations of G(n, p). The next
result is immediate from Lemma 3 and Fact 8 (iii), noting that a.a.s. δ+

(
D(n, p)

)
≥ np/8.

Corollary 9. If p ∈ (0, 2/3) is a constant, then an orientation of G = G(n, p) chosen
uniformly at random among the 2e(G) possible orientations of G a.a.s. has a Seymour
vertex. In particular, almost every labeled oriented graph contains a Seymour vertex.

3. Concluding remarks
In this paper we verify Seymour’s Second Neighborhood Conjecture for a family of sparse
random graphs. This is a first step towards confirming it on G(n, p) for all p. We also
show that, when p ∈ (0, 2/3) is a constant, the further condition of a high (though sub-
linear) minimum outdegree is sufficient for every vertex of minimum outdegree to be a
Seymour vertex. This result may be used as a tool in further proofs, and implies that
almost every (labeled) oriented graph of order n has a Seymour vertex. In forthcoming
work, we prove that an arbitrary orientation of G(n, p) satisfies the Conjecture 1 a.a.s.
whenever lim sup p < 1/4− β, for any given β > 0.
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