On the maximum number of edges in a graph with prescribed walk-nonrepetitive chromatic number *

Fábio Botler¹, Wanderson Lomenha¹, João Pedro de Souza^{1,2}

¹Programa de Engenharia de Sistemas e Computação Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia Universidade Federal do Rio de Janeiro, Brasil

> ²Departamento de Matemática Colégio Pedro II

{fbotler, wlomenha, jpsouza}@cos.ufrj.br

Abstract. Fix a coloring $c: V(G) \to \mathbb{N}$ of the vertices of a graph G and let $W = v_1 \cdots v_{2r}$ be a walk in G. We say that W is repetitive (with respect to c) if $c(v_i) = c(v_{i+r})$ for every $i \in \{1, \ldots, r\}$; and that W is boring if $v_i = v_{i+r}$, for every $i \in \{1, \ldots, r\}$. Finally, we say that c is a walk-nonrepetitive coloring of G if every repetitive walk is boring, and we denote by $\sigma(G)$ the walk-nonrepetitive chromatic number, i.e., the minimum number of colors in a walk-nonrepetitive coloring of G. In this paper we explore the maximum number of edges in a graph G with n vertices for which $\sigma(G) = k$, for $k \geq 4$. In [Barát and Wood 2008] it was shown that $e(G) \leq \frac{1}{2}(k-1)n$. We show that $e(G) = \frac{1}{2}(k-1)n$ if and only if G is a union of disjoint copies of K_k . We also show that this upper bound can be improved for connected graphs for the case k = 4: if G is a connected graph for which $\sigma(G) = 4$ and $|V(G)| \geq 5$, then $e(G) \leq \frac{4}{3}|V(G)|$.

Resumo. Fixe uma coloração $c\colon V(G)\to\mathbb{N}$ dos vértices de G e seja $W=v_1\cdots v_{2r}$ um passeio em G. Dizemos que W é repetitivo (com respeito a c) se $c(v_i)=c(v_{i+r})$ para todo $i\in\{1,\ldots,r\}$; e que W é entendiante se $v_i=v_{i+r}$ para todo todo $i\in\{1,\ldots,r\}$. Finalmente, dizemos que c é uma coloração passeio não-repetitiva de G se todo passeio repetitivo é entendiante, e denotamos por $\sigma(G)$ o número cromático passeio não-repetitivo, i.e., o menor número de cores em uma coloração passeio não-repetitiva de G. Neste artigo, exploramos o número máximo de arestas em um grafo G com G vértices para o qual G exploração passeio não-repetitiva de G se somente se G é uma união de cópias disjuntas que G exploração passeio não-repetitiva de G se somente se G é uma união de cópias disjuntas de G exploração passeio não-repetitiva de G exploração para grafos conexos quando qua quando qua quando qua quando qua

1. Introduction

All graphs in this paper are finite, undirected and simple. Given a graph G and a vertex $v \in V(G)$, we denote by d(v) (resp. N(v)) the degree (resp. the set of neighbors) of v.

^{*}This research has been partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil – CAPES – Finance Code 001. F. Botler is partially supported by CNPq (423395/2018-1), FAPERJ (211.305/2019) and UFRJ (23733). W. Lomenha is partially supported by CNPq (140654/2021-6). FAPERJ is the Rio de Janeiro Research Foundation. CNPq is the National Council for Scientific and Technological Development of Brazil.

A walk in G is a sequence $v_1 \cdots v_r$ of vertices of G for which $v_i v_{i+1} \in E(G)$ for every $i \in \{1, \ldots, r-1\}$. A walk $W = v_1 \cdots v_{2r}$ is boring if $v_i = v_{i+r}$ for each $i \in \{1, \ldots, r\}$. Given a coloring $c \colon V(G) \to \mathbb{N}$, we say that W is repetitive if $c(v_i) = c(v_{i+r})$ for each $i \in \{1, \ldots, r\}$. Finally, we say that a coloring $c \colon V(G) \to \{1, \ldots, k\}$ is walk-nonrepetitive if every repetitive walk is boring, and denote by $\sigma(G)$ the minimum k for which there is a walk-nonrepetitive coloring $c \colon V(G) \to \{1, \ldots, k\}$ of G, which is called the walk-nonrepetitive chromatic number [Barát and Wood 2008]. Nonrepetitive colorings have attracted some attention in the last years as applications of a method related to the entropy compression method [Rosenfeld 2020]. We also recommend [Wood 2021].

Note that any walk-nonrepetitive coloring c of a graph G is a proper coloring because if $uv \in E(G)$, then uv is not a boring walk, and hence $c(u) \neq c(v)$. Moreover, all the neighbors of a same vertex must have different colors. Indeed, let $v \in V(G)$ and u and w be distinct neighbors of v. Since uvwv is not a boring walk, we have $c(u) \neq c(w)$. This implies that $\sigma(G) \geq \Delta(G) + 1$, where $\Delta(G)$ denotes that maximum degree of G, and hence $e(G) \leq \frac{1}{2}\Delta(G)|V(G)| \leq \frac{\sigma(G)-1}{2}|V(G)|$, which is the upper bound proved in [Barát and Wood 2008]. This upper bound is tight because if G is a union of disjoint copies of K_k , then $\sigma(G) = k$ and $e(G) = \frac{k-1}{2}|V(G)|$. We show that such an extremal graph is unique when k divides |V(G)| (Theorem 1), and that a smaller upper bound holds for connected graphs in the case k = 4 (Theorem 2).

2. Main results

Let G be a connected graph on n vertices, and note that if $e(G) = \frac{1}{2}\Delta(G)n$, then G is regular, i.e., all of its vertices have the same degree. The following result implies that, given $k \geq 4$, there is a unique graph with walk-nonrepetitive chromatic number k and such a number of edges when k divides n.

Theorem 1. Let $k \ge 4$. If G is a (k-1)-regular graph for which $\sigma(G) = k$, then G is the union disjoint of copies of K_k .

Proof. The proof follows by induction on k. First, suppose that k=4, and let G be a 3-regular graph for which $\sigma(G)=4$. Let C_1,C_2,C_3,C_4 be the color classes of a minimum walk-nonrepetitive coloring of G. As mentioned above, since $\sigma(G)=4$, and G is 3-regular, each vertex in C_i has exactly one neighbor in each C_j with $j\in\{1,2,3,4\}$ and $j\neq i$. Therefore, $H=G\setminus C_1$ is a 2-regular graph, i.e., a set of disjoint cycles. In fact, since each vertex in H has precisely two neighbors of different colors, one may prove that each component of H is a cycle of length divisible by H. Note that if one such component H has length at least H0, then each sequence of six consecutive vertices in H1 forms a repetitive path that is not boring. Therefore, each component of H1 is a triangle.

Now, we prove that each component of G is a copy of K_4 . Let $v_1 \in C_1$ and let v_2 and v_3 be distinct neighbors of v_1 . Suppose, for a contradiction, that v_2 and v_3 are in distinct components of H, say H_2 and H_3 , respectively. Suppose, without loss of generality, that $v_2 \in C_2$ and $v_3 \in C_3$, and let v_2' (resp. v_3') be a neighbor of v_3 (resp. v_2) in C_2 (resp. C_3). Note that v_2' and v_3 are in H_3 while v_3' and v_2 are in H_2 , and hence $v_2' \neq v_2$ and $v_3' \neq v_3$. Now, let v_1' be a neighbor of v_3' in C_1 , and note that $v_1'v_3'v_2v_1v_3v_2'$ is a repetitive path that is not boring, a contradiction. Therefore all of the neighbors of v_1 are in the same component of H, and hence H is a union of disjoint copies of K_4 .

Now, suppose k > 4. Analogously to the case above, $H = G \setminus C_1$ is a (k-2)-regular graph for which $\sigma(H) = k - 1$. By the induction hypothesis, H is a union of disjoint copies of K_{k-1} , and analogously to the case above, all the neighbors of a vertex in C_1 must be in the same component, as desired.

Theorem 1 implies that any connected graph G for which $|V(G)| \ge 5$ and $\sigma(G) = 4$ has less than $\frac{3}{2}|V(G)|$ edges. The next result slightly improves this upper bound.

Theorem 2. If G is a connected graph on $n \geq 5$ vertices for which $\sigma(G) = 4$, then $e(G) \leq 4n/3$.

Proof. The proof follows by contradiction. Let G be a connected graph with $n \geq 5$ vertices and $\sigma(G) = 4$, and suppose that e(G) > 4n/3. Fix a minimum walk-nonrepetitive coloring c of G. The first step of the proof is to show that G does not have some special subgraphs. For example, G has no copies of G. Indeed, since G if G has a copy G of G, then G is a component of G, and hence G = G, a contradiction to G is a contradiction to G.

In what follows, let V_3 be the set of vertices of G with degree exactly 3, let $V_{\leq 2} = V(G) \setminus V_3$, and set $G_3 = G[V_3]$. Now, let Y be the tree obtained from the star with three edges by subdividing one of its edges (see Figure 1). We claim that G_3 has no copies of Y as a subgraph. Indeed, suppose that G_3 has a copy H of Y on the vertices u_1, u_2, u_3, u_4, w , where $N_H(u_1) = \{u_2, u_3, u_4\}$ and $N_H(u_4) = \{u_1, w\}$. Then u_2, u_3 and w are leaves of H. We may suppose, without loss of generality, that $c(u_i) = i$, for every $i \in \{1, 2, 3, 4\}$, and hence c(w) = 2 or c(w) = 3. Say c(w) = 2. The case c(w) = 3 follows analogously. As $w, u_2 \in V_3$, we have $d(w) = d(u_2) = 3$, and hence w has a neighbor v_1 for which $c(v_1) = 1$, and u_2 has a neighbor v_4 for which $c(v_4) = 4$. Note that $v_1 \neq u_1$, otherwise $d(u_1) \geq 4$. Then $v_1wu_4u_1u_2v_4$ is a repetitive walk that is not boring, a contradiction.

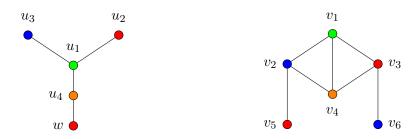


Figure 1. The Y graph.

Figure 2. The R graph.

Now, let R be graph obtained from a K_4 by removing an edge v_2v_3 , and adding two new vertices, each adjacent to one of v_2 and v_3 (see Figure 2). We claim that G has no copies of R as a subgraph. Indeed, suppose that G has a copy H of R on the vertices $v_1, v_2, v_3, v_4, v_5, v_6$, where $N_H(v_5) = \{v_2\}$, $N_H(v_6) = \{v_3\}$. We may suppose that $c(v_i) = i$, for every $i \in \{1, 2, 3, 4\}$, and hence $c(v_5) = c(v_3) = 3$ and $c(v_6) = c(v_2) = 2$. If $d_G(v_5) = d_G(v_6) = 1$, then G = H, and hence e(G) = 7 < 8 = 24/3 = 4n/3, a contradiction. Then either v_5 or v_6 , say v_5 , has a neighbor, say w, outside H. Since c is a walk-nonrepetitive coloring, $c(w) \notin \{c(v_2), c(v_5)\} = \{2, 3\}$, and hence $c(w) = i \in \{1, 4\}$. Then $wv_5v_2v_iv_3v_6$ is a repetitive walk that is not boring, a contradiction.

Given two disjoint sets of vertices U and W, we denote by e(U, W) the number of edges joining vertices of U to vertices of W. Now, let \mathcal{H} be the set of components of G_3 , and given $H \in \mathcal{H}$, let $e_H = e(V(H), V_{\leq 2})$.

Claim 1. For every component H of G_3 we have $|V(H)| \leq e_H$.

Proof. If $\Delta(H) \leq 2$, then each vertex of H has a neighbor in $V_{\leq 2}$ and the claim follows. Thus, we may assume that H has a vertex u for which $d_H(u) = 3$. Let v_1, v_2, v_3 be the neighbors of u. If v_i has a neighbor w in $V_3 \setminus \{u, v_1, v_2, v_3\}$, then $\{u, v_1, v_2, v_3, w\}$ induces a copy of Y in G_3 , a contradiction. Thus H has only four vertices and hence $e_H = 6 - 2e(G[\{v_1, v_2, v_3\}])$. If $e(G[\{v_1, v_2, v_3\}]) \leq 1$, then the claim follows, and if $e(G[\{v_1, v_2, v_3\}]) = 3$, then H is a copy of K_4 , which is a contradiction. Then $e(G[\{v_1, v_2, v_3\}]) = 2$, and H is the graph obtained from K_4 by removing one edge. Suppose that $v_1v_2 \notin E(H)$ and let w_1 and w_2 be the remaining neighbors of v_1 and v_2 , respectively. Since G does not have a copy of R, we have $w_1 = w_2$. Note that $e(w_1) \notin \{e(v_1), e(v_2)\}$ because $e(v_1)$ is a proper coloring. Then $e(w_1) \in \{e(v_1), e(v_2)\}$, and hence $e(v_1)$ has two neighbors with the same color, a contradiction.

By Claim 1, we have $|V_3| = \sum_{H \in \mathcal{H}} |V(H)| \le \sum_{H \in \mathcal{H}} e_H = e(V_3, V_{\le 2})$. Moreover, $e(V_3, V_{\le 2}) \le 2|V_{\le 2}|$, because $d(v) \le 2$ for every $v \in V_{\le 2}$. Therefore, $|V_3| \le 2|V_{\le 2}|$. Since $|V_3| + |V_{<2}| = n$, we have $|V_3| \le 2n/3$. Therefore,

$$2e(G) = \sum_{v \in V_3} d(v) + \sum_{v \in V_{\leq 2}} d(v) \le 3|V_3| + 2|V_{\leq 2}| = 2n + |V_3| \le 2n + \frac{2n}{3} = \frac{8n}{3}$$

as desired.

3. Future work

In this paper we have shown the uniqueness of the extremal graph with walk-nonrepetitive chromatic number k and order divisible by k for any fixed $k \geq 4$, which is a disconnected graph; and we also presented a smaller upper bound on the maximum number of edges in a connected graph G with walk-nonrepetitive chromatic number A. So far we have not found a graph with a matching number of edges, so this upper bound may still be improved. We were also able to show that, for general $k \geq 4$, G does not contain generalization of the Y graph, but a stronger structure seems to be needed to generalize this bound. These results may be later combined to characterize the extremal graphs with any order.

References

Barát, J. and Wood, D. R. (2008). Notes on nonrepetitive graph colouring. *The Electronic Journal of Combinatorics*, 15, R99.

Rosenfeld, M. (2020). Another approach to non-repetitive colorings of graphs of bounded degree. *The Electronic Journal of Combinatorics*, 27(3), P3.43.

Wood, D. R. (2021). Nonrepetitive graph colouring. *The Electronic Journal of Combinatorics*, DS24.