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Abstract. Fix a coloring c : V (G) → N of the vertices of a graph G and let
W = v1 · · · v2r be a walk in G. We say that W is repetitive (with respect to c) if
c(vi) = c(vi+r) for every i ∈ {1, . . . , r}; and that W is boring if vi = vi+r, for
every i ∈ {1, . . . , r}. Finally, we say that c is a walk-nonrepetitive coloring of G
if every repetitive walk is boring, and we denote by σ(G) the walk-nonrepetitive
chromatic number, i.e., the minimum number of colors in a walk-nonrepetitive
coloring of G. In this paper we explore the maximum number of edges in a graph
G with n vertices for which σ(G) = k, for k ≥ 4. In [Barát and Wood 2008] it
was shown that e(G) ≤ 1

2
(k− 1)n. We show that e(G) = 1

2
(k− 1)n if and only

if G is a union of disjoint copies of Kk. We also show that this upper bound can
be improved for connected graphs for the case k = 4: if G is a connected graph
for which σ(G) = 4 and |V (G)| ≥ 5, then e(G) ≤ 4

3
|V (G)|.

Resumo. Fixe uma coloração c : V (G) → N dos vértices de G e seja W =
v1 · · · v2r um passeio em G. Dizemos que W é repetitivo (com respeito a c) se
c(vi) = c(vi+r) para todo i ∈ {1, . . . , r}; e que W é entendiante se vi = vi+r

para todo todo i ∈ {1, . . . , r}. Finalmente, dizemos que c é uma coloração
passeio não-repetitiva de G se todo passeio repetitivo é entendiante, e denota-
mos por σ(G) o número cromático passeio não-repetitivo, i.e., o menor número
de cores em uma coloração passeio não-repetitiva de G. Neste artigo, explo-
ramos o número máximo de arestas em um grafo G com n vértices para o
qual σ(G) = k, para k ≥ 4. Em [Barát and Wood 2008] foi provado que
e(G) ≤ 1

2
(k − 1)n. Nós mostramos que e(G) = 1

2
(k − 1)n se e somente se

G é uma união de cópias disjuntas de Kk. Também provamos que o limitante
superior pode ser melhorado para grafos conexos quando k = 4: se G é um
grafo conexo com σ(G) = 4 e |V (G)| ≥ 5, então e(G) ≤ 4

3
|V (G)|.

1. Introduction
All graphs in this paper are finite, undirected and simple. Given a graph G and a vertex
v ∈ V (G), we denote by d(v) (resp. N(v)) the degree (resp. the set of neighbors) of v.
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A walk in G is a sequence v1 · · · vr of vertices of G for which vivi+1 ∈ E(G) for every
i ∈ {1, . . . , r − 1}. A walk W = v1 · · · v2r is boring if vi = vi+r for each i ∈ {1, . . . , r}.
Given a coloring c : V (G) → N, we say that W is repetitive if c(vi) = c(vi+r) for each i ∈
{1, . . . , r}. Finally, we say that a coloring c : V (G) → {1, . . . , k} is walk-nonrepetitive
if every repetitive walk is boring, and denote by σ(G) the minimum k for which there
is a walk-nonrepetitive coloring c : V (G) → {1, . . . , k} of G, which is called the walk-
nonrepetitive chromatic number [Barát and Wood 2008]. Nonrepetitive colorings have
attracted some attention in the last years as applications of a method related to the entropy
compression method [Rosenfeld 2020]. We also recommend [Wood 2021].

Note that any walk-nonrepetitive coloring c of a graph G is a proper coloring
because if uv ∈ E(G), then uv is not a boring walk, and hence c(u) ̸= c(v). Moreover,
all the neighbors of a same vertex must have different colors. Indeed, let v ∈ V (G) and u
and w be distinct neighbors of v. Since uvwv is not a boring walk, we have c(u) ̸= c(w).
This implies that σ(G) ≥ ∆(G) + 1, where ∆(G) denotes that maximum degree of G,
and hence e(G) ≤ 1

2
∆(G)|V (G)| ≤ σ(G)−1

2
|V (G)|, which is the upper bound proved

in [Barát and Wood 2008]. This upper bound is tight because if G is a union of disjoint
copies of Kk, then σ(G) = k and e(G) = k−1

2
|V (G)|. We show that such an extremal

graph is unique when k divides |V (G)| (Theorem 1), and that a smaller upper bound holds
for connected graphs in the case k = 4 (Theorem 2).

2. Main results
Let G be a connected graph on n vertices, and note that if e(G) = 1

2
∆(G)n, then G is

regular, i.e., all of its vertices have the same degree. The following result implies that,
given k ≥ 4, there is a unique graph with walk-nonrepetitive chromatic number k and
such a number of edges when k divides n.

Theorem 1. Let k ≥ 4. If G is a (k − 1)-regular graph for which σ(G) = k, then G is
the union disjoint of copies of Kk.

Proof. The proof follows by induction on k. First, suppose that k = 4, and let G be a 3-
regular graph for which σ(G) = 4. Let C1, C2, C3, C4 be the color classes of a minimum
walk-nonrepetitive coloring of G. As mentioned above, since σ(G) = 4, and G is 3-
regular, each vertex in Ci has exactly one neighbor in each Cj with j ∈ {1, 2, 3, 4} and
j ̸= i. Therefore, H = G \ C1 is a 2-regular graph, i.e., a set of disjoint cycles. In
fact, since each vertex in H has precisely two neighbors of different colors, one may
prove that each component of H is a cycle of length divisible by 3. Note that if one such
component C has length at least 6, then each sequence of six consecutive vertices in C
forms a repetitive path that is not boring. Therefore, each component of H is a triangle.

Now, we prove that each component of G is a copy of K4. Let v1 ∈ C1 and
let v2 and v3 be distinct neighbors of v1. Suppose, for a contradiction, that v2 and v3
are in distinct components of H , say H2 and H3, respectively. Suppose, without loss of
generality, that v2 ∈ C2 and v3 ∈ C3, and let v′2 (resp. v′3) be a neighbor of v3 (resp. v2)
in C2 (resp. C3). Note that v′2 and v3 are in H3 while v′3 and v2 are in H2, and hence
v′2 ̸= v2 and v′3 ̸= v3. Now, let v′1 be a neighbor of v′3 in C1, and note that v′1v

′
3v2v1v3v

′
2

is a repetitive path that is not boring, a contradiction. Therefore all of the neighbors of v1
are in the same component of H , and hence H is a union of disjoint copies of K4.



Now, suppose k > 4. Analogously to the case above, H = G \ C1 is a (k − 2)-
regular graph for which σ(H) = k − 1. By the induction hypothesis, H is a union of
disjoint copies of Kk−1, and analogously to the case above, all the neighbors of a vertex
in C1 must be in the same component, as desired.

Theorem 1 implies that any connected graph G for which |V (G)| ≥ 5 and σ(G) =
4 has less than 3

2
|V (G)| edges. The next result slightly improves this upper bound.

Theorem 2. If G is a connected graph on n ≥ 5 vertices for which σ(G) = 4, then
e(G) ≤ 4n/3.

Proof. The proof follows by contradiction. Let G be a connected graph with n ≥ 5 ver-
tices and σ(G) = 4, and suppose that e(G) > 4n/3. Fix a minimum walk-nonrepetitive
coloring c of G. The first step of the proof is to show that G does not have some special
subgraphs. For example, G has no copies of K4. Indeed, since ∆(G) ≤ 3, if G has a copy
K of K4, then K is a component of G, and hence G = K, a contradiction to n > 4.

In what follows, let V3 be the set of vertices of G with degree exactly 3, let V≤2 =
V (G) \ V3, and set G3 = G[V3]. Now, let Y be the tree obtained from the star with three
edges by subdividing one of its edges (see Figure 1). We claim that G3 has no copies of Y
as a subgraph. Indeed, suppose that G3 has a copy H of Y on the vertices u1, u2, u3, u4, w,
where NH(u1) = {u2, u3, u4} and NH(u4) = {u1, w}. Then u2, u3 and w are leaves of
H . We may suppose, without loss of generality, that c(ui) = i, for every i ∈ {1, 2, 3, 4},
and hence c(w) = 2 or c(w) = 3. Say c(w) = 2. The case c(w) = 3 follows analogously.
As w, u2 ∈ V3, we have d(w) = d(u2) = 3, and hence w has a neighbor v1 for which
c(v1) = 1, and u2 has a neighbor v4 for which c(v4) = 4. Note that v1 ̸= u1, otherwise
d(u1) ≥ 4. Then v1wu4u1u2v4 is a repetitive walk that is not boring, a contradiction.
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Figure 1. The Y graph.
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Figure 2. The R graph.

Now, let R be graph obtained from a K4 by removing an edge v2v3, and adding
two new vertices, each adjacent to one of v2 and v3 (see Figure 2). We claim that G
has no copies of R as a subgraph. Indeed, suppose that G has a copy H of R on the
vertices v1, v2, v3, v4, v5, v6, where NH(v5) = {v2}, NH(v6) = {v3}. We may suppose
that c(vi) = i, for every i ∈ {1, 2, 3, 4}, and hence c(v5) = c(v3) = 3 and c(v6) = c(v2) =
2. If dG(v5) = dG(v6) = 1, then G = H , and hence e(G) = 7 < 8 = 24/3 = 4n/3,
a contradiction. Then either v5 or v6, say v5, has a neighbor, say w, outside H . Since c
is a walk-nonrepetitive coloring, c(w) /∈ {c(v2), c(v5)} = {2, 3}, and hence c(w) = i ∈
{1, 4}. Then wv5v2viv3v6 is a repetitive walk that is not boring, a contradiction.



Given two disjoint sets of vertices U and W , we denote by e(U,W ) the number
of edges joining vertices of U to vertices of W . Now, let H be the set of components of
G3, and given H ∈ H, let eH = e(V (H), V≤2).

Claim 1. For every component H of G3 we have |V (H)| ≤ eH .

Proof. If ∆(H) ≤ 2, then each vertex of H has a neighbor in V≤2 and the claim follows.
Thus, we may assume that H has a vertex u for which dH(u) = 3. Let v1, v2, v3 be
the neighbors of u. If vi has a neighbor w in V3 \ {u, v1, v2, v3}, then {u, v1, v2, v3, w}
induces a copy of Y in G3, a contradiction. Thus H has only four vertices and hence
eH = 6 − 2e(G[{v1, v2, v3}]). If e(G[{v1, v2, v3}]) ≤ 1, then the claim follows, and
if e(G[{v1, v2, v3}]) = 3, then H is a copy of K4, which is a contradiction. Then
e(G[{v1, v2, v3}]) = 2, and H is the graph obtained from K4 by removing one edge.
Suppose that v1v2 /∈ E(H) and let w1 and w2 be the remaining neighbors of v1 and v2,
respectively. Since G does not have a copy of R, we have w1 = w2. Note that
c(w1) /∈ {c(v1), c(v2)} because c is a proper coloring. Then c(w1) ∈ {c(u), c(v3)}, and
hence v1 has two neighbors with the same color, a contradiction.

By Claim 1, we have |V3| =
∑

H∈H |V (H)| ≤
∑

H∈H eH = e(V3, V≤2). More-
over, e(V3, V≤2) ≤ 2|V≤2|, because d(v) ≤ 2 for every v ∈ V≤2. Therefore, |V3| ≤ 2|V≤2|.
Since |V3|+ |V≤2| = n, we have |V3| ≤ 2n/3. Therefore,

2e(G) =
∑
v∈V3

d(v) +
∑
v∈V≤2

d(v) ≤ 3|V3|+ 2|V≤2| = 2n+ |V3| ≤ 2n+
2n

3
=

8n

3

as desired.

3. Future work
In this paper we have shown the uniqueness of the extremal graph with walk-nonrepetitive
chromatic number k and order divisible by k for any fixed k ≥ 4, which is a disconnected
graph; and we also presented a smaller upper bound on the maximum number of edges in a
connected graph G with walk-nonrepetitive chromatic number 4. So far we have not found
a graph with a matching number of edges, so this upper bound may still be improved. We
were also able to show that, for general k ≥ 4, G does not contain generalization of the Y
graph, but a stronger structure seems to be needed to generalize this bound. These results
may be later combined to characterize the extremal graphs with any order.
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