On the maximum number of edges in a graph with prescribed walk-nonrepetitive chromatic number *

Fábio Botler ${ }^{1}$, Wanderson Lomenha ${ }^{1}$, João Pedro de Souza ${ }^{1,2}$
${ }^{1}$ Programa de Engenharia de Sistemas e Computação
Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia Universidade Federal do Rio de Janeiro, Brasil
${ }^{2}$ Departamento de Matemática
Colégio Pedro II
\{fbotler, wlomenha, jpsouza\}@cos.ufrj.br

Abstract

Fix a coloring $c: V(G) \rightarrow \mathbb{N}$ of the vertices of a graph G and let $W=v_{1} \cdots v_{2 r}$ be a walk in G. We say that W is repetitive (with respect to c) if $c\left(v_{i}\right)=c\left(v_{i+r}\right)$ for every $i \in\{1, \ldots, r\}$; and that W is boring if $v_{i}=v_{i+r}$, for every $i \in\{1, \ldots, r\}$. Finally, we say that c is a walk-nonrepetitive coloring of G if every repetitive walk is boring, and we denote by $\sigma(G)$ the walk-nonrepetitive chromatic number, i.e., the minimum number of colors in a walk-nonrepetitive coloring of G. In this paper we explore the maximum number of edges in a graph G with n vertices for which $\sigma(G)=k$, for $k \geq 4$. In [Barát and Wood 2008] it was shown that $e(G) \leq \frac{1}{2}(k-1) n$. We show that $e(G)=\frac{1}{2}(k-1) n$ if and only if G is a union of disjoint copies of K_{k}. We also show that this upper bound can be improved for connected graphs for the case $k=4$: if G is a connected graph for which $\sigma(G)=4$ and $|V(G)| \geq 5$, then $e(G) \leq \frac{4}{3}|V(G)|$.

Resumo. Fixe uma coloração $c: V(G) \rightarrow \mathbb{N}$ dos vértices de G e seja $W=$ $v_{1} \cdots v_{2 r}$ um passeio em G. Dizemos que W é repetitivo (com respeito a c) se $c\left(v_{i}\right)=c\left(v_{i+r}\right)$ para todo $i \in\{1, \ldots, r\}$; e que W é entendiante se $v_{i}=v_{i+r}$ para todo todo $i \in\{1, \ldots, r\}$. Finalmente, dizemos que c é uma coloração passeio não-repetitiva de G se todo passeio repetitivo é entendiante, e denotamos por $\sigma(G)$ o número cromático passeio não-repetitivo, i.e., o menor número de cores em uma coloração passeio não-repetitiva de G. Neste artigo, exploramos o número máximo de arestas em um grafo G com n vértices para o qual $\sigma(G)=k$, para $k \geq 4$. Em [Barát and Wood 2008] foi provado que $e(G) \leq \frac{1}{2}(k-1) n$. Nós mostramos que e $(G)=\frac{1}{2}(k-1) n$ se e somente se G é uma união de cópias disjuntas de K_{k}. Também provamos que o limitante superior pode ser melhorado para grafos conexos quando $k=4$: se G é um grafo conexo com $\sigma(G)=4 e|V(G)| \geq 5$, então e $(G) \leq \frac{4}{3}|V(G)|$.

1. Introduction

All graphs in this paper are finite, undirected and simple. Given a graph G and a vertex $v \in V(G)$, we denote by $d(v)$ (resp. $N(v)$) the degree (resp. the set of neighbors) of v.

[^0]A walk in G is a sequence $v_{1} \cdots v_{r}$ of vertices of G for which $v_{i} v_{i+1} \in E(G)$ for every $i \in\{1, \ldots, r-1\}$. A walk $W=v_{1} \cdots v_{2 r}$ is boring if $v_{i}=v_{i+r}$ for each $i \in\{1, \ldots, r\}$. Given a coloring $c: V(G) \rightarrow \mathbb{N}$, we say that W is repetitive if $c\left(v_{i}\right)=c\left(v_{i+r}\right)$ for each $i \in$ $\{1, \ldots, r\}$. Finally, we say that a coloring $c: V(G) \rightarrow\{1, \ldots, k\}$ is walk-nonrepetitive if every repetitive walk is boring, and denote by $\sigma(G)$ the minimum k for which there is a walk-nonrepetitive coloring $c: V(G) \rightarrow\{1, \ldots, k\}$ of G, which is called the walknonrepetitive chromatic number [Barát and Wood 2008]. Nonrepetitive colorings have attracted some attention in the last years as applications of a method related to the entropy compression method [Rosenfeld 2020]. We also recommend [Wood 2021].

Note that any walk-nonrepetitive coloring c of a graph G is a proper coloring because if $u v \in E(G)$, then $u v$ is not a boring walk, and hence $c(u) \neq c(v)$. Moreover, all the neighbors of a same vertex must have different colors. Indeed, let $v \in V(G)$ and u and w be distinct neighbors of v. Since $u v w v$ is not a boring walk, we have $c(u) \neq c(w)$. This implies that $\sigma(G) \geq \Delta(G)+1$, where $\Delta(G)$ denotes that maximum degree of G, and hence $e(G) \leq \frac{1}{2} \Delta(G)|V(G)| \leq \frac{\sigma(G)-1}{2}|V(G)|$, which is the upper bound proved in [Barát and Wood 2008]. This upper bound is tight because if G is a union of disjoint copies of K_{k}, then $\sigma(G)=k$ and $e(G)=\frac{k-1}{2}|V(G)|$. We show that such an extremal graph is unique when k divides $|V(G)|$ (Theorem 1), and that a smaller upper bound holds for connected graphs in the case $k=4$ (Theorem 2).

2. Main results

Let G be a connected graph on n vertices, and note that if $e(G)=\frac{1}{2} \Delta(G) n$, then G is regular, i.e., all of its vertices have the same degree. The following result implies that, given $k \geq 4$, there is a unique graph with walk-nonrepetitive chromatic number k and such a number of edges when k divides n.

Theorem 1. Let $k \geq 4$. If G is a $(k-1)$-regular graph for which $\sigma(G)=k$, then G is the union disjoint of copies of K_{k}.

Proof. The proof follows by induction on k. First, suppose that $k=4$, and let G be a 3 regular graph for which $\sigma(G)=4$. Let $C_{1}, C_{2}, C_{3}, C_{4}$ be the color classes of a minimum walk-nonrepetitive coloring of G. As mentioned above, since $\sigma(G)=4$, and G is 3regular, each vertex in C_{i} has exactly one neighbor in each C_{j} with $j \in\{1,2,3,4\}$ and $j \neq i$. Therefore, $H=G \backslash C_{1}$ is a 2 -regular graph, i.e., a set of disjoint cycles. In fact, since each vertex in H has precisely two neighbors of different colors, one may prove that each component of H is a cycle of length divisible by 3 . Note that if one such component C has length at least 6 , then each sequence of six consecutive vertices in C forms a repetitive path that is not boring. Therefore, each component of H is a triangle.

Now, we prove that each component of G is a copy of K_{4}. Let $v_{1} \in C_{1}$ and let v_{2} and v_{3} be distinct neighbors of v_{1}. Suppose, for a contradiction, that v_{2} and v_{3} are in distinct components of H, say H_{2} and H_{3}, respectively. Suppose, without loss of generality, that $v_{2} \in C_{2}$ and $v_{3} \in C_{3}$, and let v_{2}^{\prime} (resp. v_{3}^{\prime}) be a neighbor of v_{3} (resp. v_{2}) in C_{2} (resp. C_{3}). Note that v_{2}^{\prime} and v_{3} are in H_{3} while v_{3}^{\prime} and v_{2} are in H_{2}, and hence $v_{2}^{\prime} \neq v_{2}$ and $v_{3}^{\prime} \neq v_{3}$. Now, let v_{1}^{\prime} be a neighbor of v_{3}^{\prime} in C_{1}, and note that $v_{1}^{\prime} v_{3}^{\prime} v_{2} v_{1} v_{3} v_{2}^{\prime}$ is a repetitive path that is not boring, a contradiction. Therefore all of the neighbors of v_{1} are in the same component of H, and hence H is a union of disjoint copies of K_{4}.

Now, suppose $k>4$. Analogously to the case above, $H=G \backslash C_{1}$ is a $(k-2)$ regular graph for which $\sigma(H)=k-1$. By the induction hypothesis, H is a union of disjoint copies of K_{k-1}, and analogously to the case above, all the neighbors of a vertex in C_{1} must be in the same component, as desired.

Theorem 1 implies that any connected graph G for which $|V(G)| \geq 5$ and $\sigma(G)=$ 4 has less than $\frac{3}{2}|V(G)|$ edges. The next result slightly improves this upper bound.

Theorem 2. If G is a connected graph on $n \geq 5$ vertices for which $\sigma(G)=4$, then $e(G) \leq 4 n / 3$.

Proof. The proof follows by contradiction. Let G be a connected graph with $n \geq 5$ vertices and $\sigma(G)=4$, and suppose that $e(G)>4 n / 3$. Fix a minimum walk-nonrepetitive coloring c of G. The first step of the proof is to show that G does not have some special subgraphs. For example, G has no copies of K_{4}. Indeed, since $\Delta(G) \leq 3$, if G has a copy K of K_{4}, then K is a component of G, and hence $G=K$, a contradiction to $n>4$.

In what follows, let V_{3} be the set of vertices of G with degree exactly 3 , let $V_{\leq 2}=$ $V(G) \backslash V_{3}$, and set $G_{3}=G\left[V_{3}\right]$. Now, let Y be the tree obtained from the star with three edges by subdividing one of its edges (see Figure 1). We claim that G_{3} has no copies of Y as a subgraph. Indeed, suppose that G_{3} has a copy H of Y on the vertices $u_{1}, u_{2}, u_{3}, u_{4}, w$, where $N_{H}\left(u_{1}\right)=\left\{u_{2}, u_{3}, u_{4}\right\}$ and $N_{H}\left(u_{4}\right)=\left\{u_{1}, w\right\}$. Then u_{2}, u_{3} and w are leaves of H. We may suppose, without loss of generality, that $c\left(u_{i}\right)=i$, for every $i \in\{1,2,3,4\}$, and hence $c(w)=2$ or $c(w)=3$. Say $c(w)=2$. The case $c(w)=3$ follows analogously. As $w, u_{2} \in V_{3}$, we have $d(w)=d\left(u_{2}\right)=3$, and hence w has a neighbor v_{1} for which $c\left(v_{1}\right)=1$, and u_{2} has a neighbor v_{4} for which $c\left(v_{4}\right)=4$. Note that $v_{1} \neq u_{1}$, otherwise $d\left(u_{1}\right) \geq 4$. Then $v_{1} w u_{4} u_{1} u_{2} v_{4}$ is a repetitive walk that is not boring, a contradiction.

Figure 1. The Y graph.

Figure 2. The R graph.

Now, let R be graph obtained from a K_{4} by removing an edge $v_{2} v_{3}$, and adding two new vertices, each adjacent to one of v_{2} and v_{3} (see Figure 2). We claim that G has no copies of R as a subgraph. Indeed, suppose that G has a copy H of R on the vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$, where $N_{H}\left(v_{5}\right)=\left\{v_{2}\right\}, N_{H}\left(v_{6}\right)=\left\{v_{3}\right\}$. We may suppose that $c\left(v_{i}\right)=i$, for every $i \in\{1,2,3,4\}$, and hence $c\left(v_{5}\right)=c\left(v_{3}\right)=3$ and $c\left(v_{6}\right)=c\left(v_{2}\right)=$ 2. If $d_{G}\left(v_{5}\right)=d_{G}\left(v_{6}\right)=1$, then $G=H$, and hence $e(G)=7<8=24 / 3=4 n / 3$, a contradiction. Then either v_{5} or v_{6}, say v_{5}, has a neighbor, say w, outside H. Since c is a walk-nonrepetitive coloring, $c(w) \notin\left\{c\left(v_{2}\right), c\left(v_{5}\right)\right\}=\{2,3\}$, and hence $c(w)=i \in$ $\{1,4\}$. Then $w v_{5} v_{2} v_{i} v_{3} v_{6}$ is a repetitive walk that is not boring, a contradiction.

Given two disjoint sets of vertices U and W, we denote by $e(U, W)$ the number of edges joining vertices of U to vertices of W. Now, let \mathcal{H} be the set of components of G_{3}, and given $H \in \mathcal{H}$, let $e_{H}=e\left(V(H), V_{\leq 2}\right)$.

Claim 1. For every component H of G_{3} we have $|V(H)| \leq e_{H}$.
Proof. If $\Delta(H) \leq 2$, then each vertex of H has a neighbor in $V_{\leq 2}$ and the claim follows. Thus, we may assume that H has a vertex u for which $d_{H}(u)=3$. Let v_{1}, v_{2}, v_{3} be the neighbors of u. If v_{i} has a neighbor w in $V_{3} \backslash\left\{u, v_{1}, v_{2}, v_{3}\right\}$, then $\left\{u, v_{1}, v_{2}, v_{3}, w\right\}$ induces a copy of Y in G_{3}, a contradiction. Thus H has only four vertices and hence $e_{H}=6-2 e\left(G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]\right)$. If $e\left(G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]\right) \leq 1$, then the claim follows, and if $e\left(G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]\right)=3$, then H is a copy of K_{4}, which is a contradiction. Then $e\left(G\left[\left\{v_{1}, v_{2}, v_{3}\right\}\right]\right)=2$, and H is the graph obtained from K_{4} by removing one edge. Suppose that $v_{1} v_{2} \notin E(H)$ and let w_{1} and w_{2} be the remaining neighbors of v_{1} and v_{2}, respectively. Since G does not have a copy of R, we have $w_{1}=w_{2}$. Note that $c\left(w_{1}\right) \notin\left\{c\left(v_{1}\right), c\left(v_{2}\right)\right\}$ because c is a proper coloring. Then $c\left(w_{1}\right) \in\left\{c(u), c\left(v_{3}\right)\right\}$, and hence v_{1} has two neighbors with the same color, a contradiction.

By Claim 1, we have $\left|V_{3}\right|=\sum_{H \in \mathcal{H}}|V(H)| \leq \sum_{H \in \mathcal{H}} e_{H}=e\left(V_{3}, V_{\leq 2}\right)$. Moreover, $e\left(V_{3}, V_{\leq 2}\right) \leq 2\left|V_{\leq 2}\right|$, because $d(v) \leq 2$ for every $v \in V_{\leq 2}$. Therefore, $\left|V_{3}\right| \leq 2\left|V_{\leq 2}\right|$. Since $\left|V_{3}\right|+\left|V_{\leq 2}\right|=n$, we have $\left|V_{3}\right| \leq 2 n / 3$. Therefore,

$$
2 e(G)=\sum_{v \in V_{3}} d(v)+\sum_{v \in V_{\leq 2}} d(v) \leq 3\left|V_{3}\right|+2\left|V_{\leq 2}\right|=2 n+\left|V_{3}\right| \leq 2 n+\frac{2 n}{3}=\frac{8 n}{3}
$$

as desired.

3. Future work

In this paper we have shown the uniqueness of the extremal graph with walk-nonrepetitive chromatic number k and order divisible by k for any fixed $k \geq 4$, which is a disconnected graph; and we also presented a smaller upper bound on the maximum number of edges in a connected graph G with walk-nonrepetitive chromatic number 4 . So far we have not found a graph with a matching number of edges, so this upper bound may still be improved. We were also able to show that, for general $k \geq 4, G$ does not contain generalization of the Y graph, but a stronger structure seems to be needed to generalize this bound. These results may be later combined to characterize the extremal graphs with any order.

References

Barát, J. and Wood, D. R. (2008). Notes on nonrepetitive graph colouring. The Electronic Journal of Combinatorics, 15, R99.

Rosenfeld, M. (2020). Another approach to non-repetitive colorings of graphs of bounded degree. The Electronic Journal of Combinatorics, 27(3), P3.43.

Wood, D. R. (2021). Nonrepetitive graph colouring. The Electronic Journal of Combinatorics, DS24.

[^0]: *This research has been partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil - CAPES - Finance Code 001. F. Botler is partially supported by CNPq (423395/2018-1), FAPERJ (211.305/2019) and UFRJ (23733). W. Lomenha is partially supported by CNPq (140654/2021-6). FAPERJ is the Rio de Janeiro Research Foundation. CNPq is the National Council for Scientific and Technological Development of Brazil.

