
Algorithms for a Restricted Genome Median Problem

Helmuth O. M. Silva1, Diego P. Rubert1, Eloi Araujo1, Fábio V. Martinez1

1Faculdade de Computação, Universidade Federal de Mato Grosso do Sul
Campo Grande – MS – Brazil

helmuth.silva@ufms.br, {diego,feloi,fhvm}@facom.ufms.br

Abstract. In the median problem we are given a set of three or more genomes and want to find a new

genome minimizing the sum of pairwise distances between it and the given genomes. For almost all rear-

rangement operations the median problem is NP-hard. We study the median problem under a restricted

rearrangement measure called c4-distance, which is closely related to breakpoint and DCJ distances. We

propose two algorithms for its construction, one exact ILP-based and a combinatorial heuristic, and per-

form experiments on simulated data.

1. Background

Almost all known rearrangement distances can be computed efficiently under the as-
sumption that genomic markers appear unique in each genome [Fertin et al. 2009,
Yancopoulos et al. 2005, Bergeron et al. 2006]. However, constructing a median of three
genomes is NP-hard under almost all rearrangement distances, including double-cut-and-
join (DCJ) [Tannier et al. 2009], with two notable exceptions: the breakpoint distance
and the closely related single-cut-or-join (SCJ) are tractable for multichromosomal circu-
lar and mixed genomes [Tannier et al. 2009, Feijão and Meidanis 2011].

The breakpoint graph supports the computation of rearrangement distances and
in doing so, the contained number of cycles plays an essential role. To compute the
breakpoint distance, only cycles of length 2 are counted and to compute the DCJ distance
cycles of any length are counted. Here we study the c4-distance between two genomes,
which is based on the number of cycles of length at most 4. Thus, it is required to count
those cycles with at most one DCJ operation to be transformed into adjacencies.

A marker is an oriented DNA fragment. We denote a marker either by m or by
m, depending on its orientation. A chromosome is a sequence of markers. We consider
only circular genomes and use a string of markers to represent a chromosome, adding
parentheses at the extremities. A genome is a collection of chromosomes. A marker m
has two extremities represented by mt (tail) and mh (head). We denote an adjacency in a
chromosome by a pair of consecutive marker extremities. As an example, (5 2 4 3 6 1) is
a circular chromosome and {(3), (5 2 6), (4 1)} is a multichromosomal genome.

One can compute a rearrangement distance between two given genomes with the
support of a breakpoint graph [Bafna and Pevzner 1996]. Let M be a set of n markers
and define Mx the set of extremities of all markers in M, with |Mx| = 2n. For two
genomes A and B, each one with n markers from M, the breakpoint graph BG(A,B)
is the multigraph whose vertex set is Mx and the edges are of two types: A-edges and
B-edges, corresponding to adjacencies in genomes A and B, respectively. This graph has
vertices with degree zero, one or two, and thus it is a collection of paths and cycles.

Let Π be a set with p ≥ 3 genomes, each one with n markers from M. The
median problem on Π asks for finding a genome Γ with n markers from M minimiz-
ing the pairwise distances between Γ and each genome in Π, under a rearrangement
operation. If the operation is the SCJ, then the median can be computed in polynomial
time [Feijão and Meidanis 2011]. For the DCJ operation, the median problem is NP-hard,
even for p = 3 [Tannier et al. 2009, Caprara 2003]. Motivated by the searching for where
is the boundary of efficiency-hardness of the median problem, we define the c4-distance
between Πi and Πj , denoted by d4, given by d4(Πi,Πj) = n − c2 − c4, where n is the
number of markers in M, and c` is the number of `-cycles in BG(Πi,Πj), ` ∈ {2, 4}.

Let Π = {Π1, . . . ,Πp} be a set of 3 genomes and Γ be a genome. The c4-cost
K(Π,Γ) of Γ given Π is K(Π,Γ) =

∑
Πi∈Π d4(Πi,Γ). We say that a genome Γ is a

c4-median of a set of 3 genomes Π if Γ minimizes the c4-cost K(Π,Γ). For a given set of
genomes Π, we denote by K?(Π) the value of its c4-median: K?(Π) = min{K(Π,Γ) :
genomes in Π and genome Γ}. Thus, we can state the following:

Problem c4-MEDIAN(Π): Given 3 genomes in Π, each with n markers from M, find a
genome Γ with n markers from M such that K?(Π) = K(Π,Γ).

2. ILP
Our exact integer linear program (ILP) algorithm translates the minimization formula
for the c4-median problem in a straightforward way. Suppose we are given a set of three
genomes Π = {Π1,Π2,Π3} on M, where each genome Πi is represented by n adjacencies
of its markers. Then, we check whether an arbitrary adjacency is an i-colored 2-cycle or
whether two arbitrary adjacencies are an i-colored 4-cycle in the “extended” breakpoint
graph BGx(Π)—a breakpoint graph for more than two genomes—, for each possible
adjacency of a pair in Mx. We then maximize these quantities to obtain the solution.

Algorithm 1 ILP for computing the c4-median
min 3n−

∑
π∈Πi
Πi∈Π

c
π
2,i −

∑
π,σ∈Πi
Πi∈Π

c
π,σ
4,i

s. t.
∑
v∈Mx
v 6=u

uv = 1 ∀ u ∈Mx (C.01)

c
π
2,i = π ∀ π = uv ∈ Πi, ∀Πi ∈ Π (C.02)

2c
π,σ
4,i ≤

ux+ uy+

vx+ vy

∀ π = uv

∀ σ = xy

}
∈ Πi, ∀Πi ∈ Π (C.03)

and uv ∈ {0, 1} ∀ u, v ∈Mx, u 6= v (D.01)
c
π
2,i ∈ {0, 1} ∀ π = uv ∈ Πi, ∀Πi ∈ Π (D.02)

c
π,σ
4,i ∈ {0, 1}

∀ π = uv

∀ σ = xy

}
∈ Πi, ∀Πi ∈ Π (D.03)

We impose that one and only one egde in the solution is chosen for each possible
extremity u in Mx of a marker in M (constraint (C.01) and binary variable (D.01)). If an
adjacency π = uv of a genome Πi is chosen for extremities u, v ∈ Mx, then the binary
variable cπ2,i is set to 1. Otherwise, cπ2,i is set to 0 ((C.02) and (D.02)). Besides that, if we
have two adjacencies π = uv and σ = xy in Mx and a pair of distinct adjacencies is cho-
sen for extremities u, v, x, y in Mx, then the binary variable cπ,σ4,i is set to 1. Otherwise, cπ,σ4,i

is set to 0 ((C.03) and (D.03)). Finally, for genomes Πi, 1 ≤ i ≤ 3, we maximize cπ2,i and
cπ,σ4,i for all possible adjacencies π and σ of extremities of Mx, which corresponds to the
objective function. Observe that we have O(n2) constraints and variables in Algorithm 1.

3. Edge scores heuristic

Let G = BGx(Π) be the extended breakpoint graph of a set Π of given genomes, each
one with n markers from the set of markers M. Let R be the set of reliable edges, and an
edge e in G belongs to R if it has multiplicity at least 2. Let Γ be a matching in G. The
score s of an edge uv in Γ is s(uv) = t+ 1

2
f , where t is the number of i-colored 2-cycles

and f is the number of i-colored 4-cycles such that uv belongs to, with i ∈ {1, 2, 3}.
Notice that 0 ≤ t+ f ≤ 3. Let s(Γ) :=

∑
uv∈Γ s(uv). The two edges in Γ of an i-colored

4-cycle in GΓ are sibling edges. Then, for each edge uv in Γ, the cycle potential λ in GΓ

is λ(uv) = 1
2
(µ(uv)+3)−s(uv). The cycle potential λ(uv) of an edge uv in Γ represents

the possibility of involvement of uv in other 2- and 4-cycles in GΓ.

Algorithm 2 starts choosing reliable edges and arbitrary remaining edges to be
part of an initial solution, obtaining a 1-regular graph Γ with vertex set V (G). Then, it
computes score and cycle potential for each edge in Γ. The next step is trying to increase
the score of an edge, and to decrease the cycle potential of a small subset of edges, through
local changes. It repeats this process while the sum of the scores of all edges increases
from one step to the next and there is an edge with positive cycle potential. Observe that
the search in line 4, for an edge in G, takes O(n) time and each line from 5 to 11 can be
performed in constant time. Moreover, s(Γ) can be increased O(n) times, which means
that the running time of Algorithm 2 is O(n2).

Algorithm 2 Edge scores
Input: Genomes in Π and extended breakpoint graph G = BGx(Π)
Output: 1-regular graph Γ

1: let R be the set of reliable edges of G
2: let Γ be a 1-regular graph comprised of R and arbitrary remaining edges
3: compute s(uv), λ(uv) for each edge uv in Γ
4: if there exists an edge uv in Γ such that λ(uv) > 0 then
5: let uu1, vv1 be i-colored edges, u1v1 6∈ Γ, i ∈ {1, 2, 3}
6: let u1u2, v1v2 be edges in Γ
7: if u1u2, v1v2 /∈ R then
8: Γ = Γ + {u1v1, u2v2} − {u1u2, v1v2}
9: update s(uv), λ(uv)

10: update s,λ for sibling edges of u1u2,v1v2,u1v1,u2v2
11: compute s(u1v1), λ(u1v1) and s(u2v2), λ(u2v2)
12: repeat lines 4–11 while s(Γ) can be increased without removing reliable edges in R
13: return Γ

4. Experiments

We simulated multiple genomes in order to (i) sketch the boundaries where our ILP (Algo-
rithm 1) can perform in reasonable time whilst providing an acceptable accuracy, and (ii)
evaluate the quality and running times of our heuristic (Algorithm 2). Experiments were
run using 3.60GHz CPUs. We implemented the heuristic in Python 3 and used Gurobi
9.0.2 as ILP solver with 8 cores and time limit of 1 hour.

Given a root genome with n markers, a descendant trio is a set of three genomes,
each one generated by simulating independently n

100
· k random DCJs in the root genome.

We generated firstly root genomes with {50, 60, . . . , 400} markers distributed in a couple
circular chromosomes and then, for each root genome, five descendant trios varying k
in {10, 15, 20, 25, 30} (Fig. 1). For this dataset, reaching the time limit seems to depend
more on the absolute number of DCJs used to generate the trios than on the genome sizes,

as the solver always spent 1 hour after around 30 DCJs (magenta line in Fig. 1(a)). Con-
versely, the results suggest that the gap between the solution returned by the ILP solver
and the best lower bound known grows slower than the running time (Fig. 1(b)). Gaps
did not grow over 8% when k ≤ 25 for most genomes in this dataset (red regions in
Fig. 1(b)). The running times of Algorithm 2 were negligible, and the solutions differed
2.8% on average, respectively, from the (not necessarily optimal) solutions given by the
solver. Second, in order to stress the heuristic and evaluate their performance, we simu-
lated datasets with large genomes, from 1,000 to 10,000 markers and k = 30.

100

200

300

400

15
20

25
30
0

20

40

60

n (#
of markers)of DCJs w.r.t n)

T
im

e
(m

)

0

20

40

60

T
im

e
(m

)

100

200

300

400

15
20

25
30

4

8

12

n (#
of markers)

k (%
of DCJs w.r.t n)

G
ap

(%
)

0

4

8

12

G
ap

(%
)

(a) (b)

0

k (%

Figure 1. For multiple genome sizes and k values, (a) running times of the ILP solver in minutes and
(b) gap between the solution returned by the ILP solver and the best lower bound known.

5. Conclusion
In this work we study the median problem under the c4-distance. We develop algorithms,
one exact ILP-based and one combinatorial heuristic, which allow us to perform experi-
ments on simulated data and to provide many insights about the problem. Moreover, this
work offers many perspectives for future research. From the theoretical perspective, the
computational complexity of the problem is still open. Algorithms proposed give a prac-
tical perspective to the problem and allow to compare their results to those for breakpoint
and DCJ median. Particularly, we want to design a strategy to speed up Algorithm 1,
such as a branch and bound algorithm. On the other hand, we also want to establish ap-
proximations factors to the heuristic (Algorithm 2). Besides that, a real data analysis, of
single-celled organisms or mitochondrial DNA of more complex organisms, should give
us more information about the behaviour of this measure in practice.

References
Bafna, V. and Pevzner, P. A. (1996). Genome rearrangements and sorting by reversals. SIAM J Comput, 25(2):272–289.

Bergeron, A., Mixtacki, J., and Stoye, J. (2006). A unifying view of genome rearrangements. In Proc. of WABI, volume
4175 of LNBI, pages 163–173.

Caprara, A. (2003). The reversal median problem. INFORMS J Comput, 15:93––113.

Feijão, P. and Meidanis, J. (2011). SCJ: A breakpoint-like distance that simplifies several rearrangement problems.
IEEE/ACM Trans Comput Biol Bioinf, 8(5):1318–1329.

Fertin, G., Labarre, A., Rusu, I., Tannier, E., and Vialette, S. (2009). Combinatorics of Genomes Rearrangements. The
MIT Press.

Tannier, E., Zheng, C., and Sankoff, D. (2009). Multi-chromosomal median and halving problems under different
genomic distances. BMC Bioinformatics, 10(120).

Yancopoulos, S., Attie, O., and Friedberg, R. (2005). Efficient sorting of genomic permutations by translocation,
inversion and block interchanges. Bioinformatics, 21(16):3340–3346.

	Background
	ILP
	Edge scores heuristic
	Experiments
	Conclusion

