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Abstract. In this paper, we consider the problem of computing the minimum
number of colors needed to properly color the edges of a complete graph on n
vertices so that there are no pair of vertex-disjoint triangles colored with the
same colors. This problem was introduced recently (in a more general context)
by Conlon and Tyomkyn, and the corresponding value was known for odd n. We
compute this number for another infinite set of values of n, and discuss some
small cases.

1. Introduction

In this paper, all graphs considered are finite and simple (no multiple edges or loops
allowed). Let G be a graph, we say that an edge coloring c : E(G) → N is proper if for
every two distinct edges e1, e2 ∈ E(G), we have c(e1) ̸= c(e2) whenever e1 ∩ e2 ̸= ∅. A
recent paper [Conlon and Tyomkyn 2020] introduced a new restriction on edge colorings,
as follows: let n, k ≥ 2 be integers, and H be a fixed graph. The number fk(n,H) is
defined as the smallest C with the property that there is a proper edge coloring of Kn with
C colors containing no k vertex-disjoint color-isomorphic copies of H (i.e., isomorphic
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copies of H for which there is an isomorphism between them that preserves the colors of
the edges).

In this paper, we deal with the case k = 2 and H = K3. Conlon and Tyomkyn
show that f2(n,K3) = n whenever n is odd, and that this implies that f2(n,K3) ≤ n+ 1
for even n. Furthermore, as any proper coloring of Kn requires at least n − 1 colors, it
follows that f2(n,K3) ≥ n− 1. Hence, the remaining problem is to decide, for each even
n, whether f2(n,K3) equals to n − 1, n or n + 1. In Section 2, we deal with the cases
n ∈ {4, 6, 8, 12}, determining f2(n,K3) (with the aid of a computer in the case n = 12).
In Section 3, we give an infinite set of integers n for which f(n) = n−1. Finally, Section
4 is devoted to some concluding remarks and suggestions of future work.

2. Small cases
In this section, we determine f2(n,K3) for n ∈ {4, 6, 8, 12} . It is clear that f2(4, K3) = 3,
since there are no pair of vertex-disjoint triangles in K4, and hence we are simply looking
for any proper edge coloring. Perhaps surprisingly, the next two results show that, for
both n = 6 and n = 8, n+ 1 colors are needed.

In the proofs of this section, we say that two vertex-disjoint triangles are similar
in an edge coloring of a graph if their edges get the same three colors; and say that a color
is full if the edges that receive it form a perfect matching in the graph.
Theorem 1. f2(6, K3) = 7.

Proof. By the previous considerations, it is enough to prove that every edge-coloring of
K6 with at most six colors contains a pair of vertex-disjoint similar triangles. Assume that
this is not the case, and let V (K6) = {1, . . . , 6}. As K6 has fifteen edges, and each of the
at most six color classes consists of at most three edges, it follows that at least three colors
are full. Furthermore, the union of any two perfect matchings induces a cycle of length
6. We may assume without loss of generality that the cycle 123456 is colored alternately
with colors 1 and 2. We will call an edge a short chord if it connects two vertices within
distance 2 in this cycle (in particular, a short chord forms a triangle with edges of color 1
and 2). It is easy to see that if we have three short chords with the same color, we get two
distinct similar triangles. Furthermore, two short chords of the same color must be of the
form i(i + 2) and (i + 1)(i + 3) for some i (indices mod 6), since otherwise they would
generate two disjoint similar triangles.

Suppose that there is some short chord colored with a full color, say 13 is colored
with color 3. It is simple to check that the remaining edges of color 3 must be 25 and 46,
which is a contradiction, since 123 and 456 would be similar triangles.

This implies that no short chord belongs to a full color. As there are 6 short
chords and each of the (at most three) colors that are not full can cover at most two
short chords, we conclude that every color which is not full appears in exactly two short
chords. Without loss of generality, we may assume that 13 and 24 got color 4, 35 and 46
got color 5, and 51 and 62 got color 5. In this case, the triangles 135 and 246 are similar,
a contradiction.

Theorem 2. f2(8, K3) = 9.

Proof. By the previous considerations, it is enough to prove that every edge-coloring of
K8 with at most 8 colors contains a pair of vertex-disjoint similar triangles. Assume that



this is not the case, and let {1, . . . , 8} be the vertex set of the K8. As K8 has 28 edges,
and each of the at most eight color classes consists of at most four edges, it follows that
at least four colors are full. Let us split the proof into two cases.

Case 1: There are two full colors whose union is a C8. Without loss of generality,
we may say that the colors 1 and 2 span the cycle 12345678 (in a way that 12 is colored
with color 1).

If a short chord, say, 82, belongs to a full color (say, 3), then it is simple to check
that the other edges of color 3 must be 15, 36 and 47, or otherwise there will be two
disjoint triangles colored with 1, 2 and 3. Now consider the short chord 46, which is
colored, say, with color 4. Either the chord 35 or 57 is colored with a new color, say, 5.
We will assume that 57 is colored with 5. Now, it is readily checked that there is no edge
incident on vertex 2 colored with color 4 (otherwise there would be two disjoint triangles
colored with 1, 3 and 4). As we have at most eight colors, we conclude that every color
except 4 must appear in some edge incident to vertex 2. In particular, some edge must
be colored with color 5, and again it is simple to check that this is a contradiction, for it
would create either two disjoint triangles colored with 1, 2 and 5 or 2, 3 and 5.

Therefore, we may assume that every short chord belongs to a color that is not
full. As we have at most four such colors and eight short chords, we conclude that there
are exactly four colors that are not full (and hence, each such color covers exactly three
edges), and each of them covers exactly two short chords that must be neighboring. That
is, we may assume that the edges 13 and 24, 35 and 46, 57 and 68, 71 and 82 are colored
with color 3, 4, 5 and 6, respectively. The third edge of color 3 must be 58 (as the
other edges joining vertices from {5, 6, 7, 8} are already colored with other colors), and,
similarly, 72, 14 and 36 must be colored with color 4, 5 and 6, respectively. The triangles
134 and 568 are similar (both have color set 135), a contradiction.

Case 2: Every pair of full colors spans two copies of C4.

In this case, it is simple to check that the union of three full colors, say, 1, 2 and 3,
must span a cube such that each color class corresponds to one dimension. A fourth full
color, say, 4, cannot cover any edge inside a face of the cube, otherwise it would create a
similar triangle in the opposite face. This implies that the edges of color 4 are precisely
the main diagonals of the cube.

The colors 5, 6, 7, 8 must cover the diagonal of the faces of the cube. It is clear that,
inside a face, the two diagonals must be of different colors (otherwise the opposite face
would have a similar triangle). Furthermore, if one face has diagonals colored with 5 and
6, the opposite must have the other two colors, i.e., 7 and 8, not to create a similar triangle.
Moreover, two adjacent faces cannot have the same pair of colors in their diagonals, since
it would generate two similar triangles together with the main diagonals of the cube.

The observations above imply that each of the
(
4
2

)
= 6 pairs of the colors 5, 6, 7, 8

appears in the diagonals of exactly one of the faces of the cube. Consider the three faces
that contains a diagonal of color 5. No two of these faces can be opposite, and hence the
three are mutually adjacent. This is a contradiction, since it is checked that there are no
three pairwise independent diagonals in three mutually adjacent faces of the cube.

Finally, with aid of a computer, we found that f2(12, K3) = 12 (see Figure 1),



which is the smallest even value of n such that f2(n,K3) = n. This shows that each value
of {n−1, n, n+1} can occur as f2(n,K3) for some even n. The technique used was a re-
duction to a SAT problem, which was generated using Sage [The Sage Developers 2020]
and solved using a SAT solver [Biere 2018]. The code and the coloring are available at
https://github.com/robertoparente/k3copy_sat.

Figure 1. A coloring of K12 with 12 colors

3. An infinite family of values of n
In this section, we compute f2(n,K3) for the first known infinite family of even n.
Theorem 3. If n = 3t + 1, where t is a positive integer, then f2(n,K3) = n− 1.
Proof (sketch): Suppose that n = 3t + 1, and let u be a fixed vertex of Kn. We associate
each of the remaining 3t vertices to a distinct element of Zt

3 = {x = (x1, . . . , xt) : xi ∈
Z3, ∀i ∈ [t]}.

We define the coloring χ : E(Kn) → {0, 1, 2}t = Zt
3 as follows:

χ({x, y}) =
{

(2x1, . . . , 2xt), if y = u;
(x1 + y1, . . . , xt + yt), if u /∈ {x, y},

where the addition is considered modulo 3. It is simple to check that χ is a coloring with
the desired properties.

4. Concluding remarks
In this paper, we considered proper edge coloring in which vertex-disjoint triangles re-
ceive different sets of colors. As mentioned before, this problem was posed in a broader
context of forbidding any number of repetitions of any fixed graph in proper colorings of
Kn. We plan to investigate the problem for other number of copies and other fixed graphs.
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