
(Sub)Fall Coloring and B-Coloring
Parameterized by Treewidth

Davi de Andrade1, Ana Silva1

1ParGO Group - Parallelism, Graphs and Optimization
Centro de Ciências - Departamento de Matemática

Universidade Federal do Ceará (UFC)

daviandradeiacono@alu.ufc.br, anasilva@mat.ufc.br

Abstract. Given a proper coloring f ofG, a vertex u is a b-vertex if it is adjacent
to every color class distinct from its own. A proper coloring is said to be a b-
coloring if each color class contains at least one b-vertex, and a fall coloring if
all vertices are b-vertices. Also, if f is a fall coloring of an induced subgraph
H of G, then we say that f is a subfall coloring of G. In this paper, we provide
algorithms for each of the decision problems related to these colorings whose
running times are FPT when parameterized by the number of colors plus the
treewidth of the input graph.

1. Introduction

Given a simple graph G, a k-coloring of G is a function f : V (G) → {1, 2, . . . , k};
it is proper if f(u) 6= f(v) for every uv ∈ E(G). The problem of decid-
ing whether a graph has a proper k-coloring is one of the most investigated prob-
lems in Graph Theory, being NP-complete to decide if an arbitrary graph has a
proper k-coloring even with k = 3, as proved in [Garey et al. 1974]. As alterna-
tive, colorings obtained by certain heuristics are applied, giving rise to many varia-
tions of the coloring problem, such as Grundy coloring [Christen and Selkow 1979], b-
coloring [Irving and Manlove 1999] and a-coloring [Harary and Hedetniemi 1970]. Here,
we concentrate on b-colorings [Irving and Manlove 1999], fall colorings and subfall col-
orings [Dunbar et al. 2000].

Given a proper k-coloring f of G, a vertex v ∈ V (G) is a b-vertex in f if
f(N [v]) = [k], i.e., v has a neighbor in each color class different from its own. We
say that f is a b-coloring if every color class contains at least one b-vertex; and that it is
a fall coloring if every vertex is a b-vertex. Also, given a fall coloring f of an induced
subgraph H of G, we say that f is a subfall coloring of G. The b-chromatic number,
b(G), of G is the largest value k for which G has a b-coloring with k colors. The fall
chromatic number, ψ(G), and the subfall chromatic number, ψs(G), are defined simi-
larly. In [Irving and Manlove 1999], they proved that computing b(G) is NP-hard, while
in [Kratochvı́l et al. 2002] they proved that deciding whether a graph has a b-coloring with
k colors is NP-complete even if G is a connected bipartite graph and k = ∆(G) + 1. Fur-
thermore, in [Dunbar et al. 2000], they proved that deciding if ψ(G) ≥ 3 is NP-complete.
More recently, in [Andrade and Silva 2021], the authors proved that deciding ψs(G) ≥ k
is: NP-complete for every k ≥ 4; and polynomial for k ≤ 2. Additionally, they charac-
terized the graphs with ψs(G) ≥ 3.

Given the difficulty of such problems, a usual approach is to investigate their pa-
rameterized complexity. In particular, many works parameterize problems by measures
on graphs called widths (see e.g. [Vatshelle 2012] for a nice overview of more than 30 dif-
ferent width measures). Perhaps the most famous of such widths is the treewidth, which
intuitively measures how close a graph is from being a tree. This is due to its high ap-
plicability for obtaining FPT algorithms, even when the graph does not have bounded
treewidth as witnessed by the win-win strategy (see e.g. [Cygan et al. 2015]).

In [Panolan et al. 2017] it is proved that deciding if b(G) ≥ k is W[1]-hard when
parameterized by k, and in fact an XP algorithm is not yet known to exist. Also, up to
our knowledge, the only result addressing b-coloring parameterized by the treewidth is
presented in [Jaffke et al. 2021], but via Courcelle’s Theorem [Courcelle 1990], which is
regarded simply as a classification tool (see e.g. [Cygan et al. 2015]). Here, we provide
an O∗((6k · k)w) algorithm to decide whether b(G) ≥ k for graphs with treewidth w.

As for the other problems, we provide anO∗((6k·k)w) algorithm to decide whether
ψ(G) ≥ k and an O∗((6k · 2 · k)w) algorithm to decide whether ψs(G) ≥ k. Even
though our algorithm does not improve the O∗((4k · k2)w) algorithm for fall k-coloring
presented in [Telle and Proskurowski 1997], it has the advantage of being more clear (the
cited algorithm is a generic meta-algorithm), and of naturally leading to the algorithms for
subfall coloring and for b-coloring. Additionally, we observe that, since ψ(G) ≤ δ(G) ≤
tw(G), it follows that computing the exact value of ψ(G) can be done in FPT time when
parameterized by the treewidth tw(G). Similarly, we have that ψs(G) ≤ maxH⊆G δ(H).
The value on the right side of the latter equation is also known as the degeneracy of G,
and since it is known that this value is also at most equal to the treewidth of G, it again
follows that ψs can be computed in FPT time when parameterized by tw(G). It is an open
question whether the same holds for b(G).

In the remainder of the text, we assume familiarity with basic graph definitions and
FPT notions, as well as with tree decomposition techniques. A nice tree decomposition
T = (T,X) is assumed to be given (see [Cygan et al. 2015]).

2. Parameterized complexity of fall k-coloring

In this section, we give a dynamic-programming algorithm that establishes the complexity
of fall coloring when parameterized by treewidth. The general idea for our table is that,
for every possible k-coloring of bag Xt for a node t of the decomposition tree T , we
compute whether it can be extended to a partial fall k-coloring of the graph Gt induced
by all vertices in the bags of the subtree of T rooted at t. By partial we mean that every
vertex of Gt is a b-vertex, with the exception of possibly some vertices of Xt. For this,
we need to keep track of which colors are indeed being used, and of which colors are
missing in the neighborhood of each vertex of Xt. Formally, given node t ∈ V (T), where
Xt = {v1, v2, . . . , vp}, we define the table related to t as follows. For each proper k-
coloring f of Xt, and for eachM = {M0, . . . ,Mp}, with Mi ⊆ [k] for every i, we say
that ct(f,M) = 1 if and only if there exists a coloring f ′ that extends f toGt and satisfies:

1. Every u ∈ V (Gt) \Xt is a b-vertex in f ′;
2. For every vi ∈ Xt, we have f ′(NGt [vi]) = [k] \Mi; and
3. f ′(V (Gt)) = [k] \M0.

Let r be the root of the nice tree decomposition. Recall that Xr = ∅ and letM∅ =
{M0} where M0 = ∅. Observe that G has a fall k-coloring if and only if cr(∅,M∅) = 1.
Because of space constraints, we present only the computation of forget nodes. A forget
node is a node t with Xt = {v1, . . . , vp−1}, and an only child t′ where Xt′ = Xt ∪ {vp}.
Let f : Xt → [k] andM = {M0, . . . ,Mp−1}. Then,

ct(f,M) = 1 iff ∃c ∈ [k] s.t. ct′(fc,M′) = 1, where M ′
p = ∅, fc(vp) = c, and

∀i ∈ {0, . . . , p− 1}, M ′
i = Mi and fc(vi) = f(vi) .

The complexity O∗((6k · k)w) follows from the size of the table of each node,
which is equal to O∗((2k · k)w), the fact that the table of a node can be computed in time
O∗(3kw), and that |V (T)| = O(|V (G)|) (see [Cygan et al. 2015]).

3. Subfall coloring
In this section, we apply ideas analogous to the ones applied in the previous section in
order to decide whether a given graph has a subfall k-coloring. For this, given node
t ∈ V (T), for each subset S = {v1, . . . , vp} ⊆ Xt, each proper k-coloring f of S, and
eachM = {M0, . . . ,Mp}, with Mi ⊆ [k] for every i, we say that ct(S, f,M) = 1 if and
only if there exist H ⊆ Gt and k-coloring f ′ that extends f to H that satisfy:

1. Every u ∈ V (H) \Xt is a b-vertex in f ′;
2. For every vi ∈ S, we have f ′(NH [vi]) = [k] \Mi;
3. f ′(V (H)) = [k] \M0; and
4. V (H) ∩Xt = S.

Let r andM∅ be as before, and observe that G has a subfall k-coloring if and only
if cr(∅, ∅,M∅) = 1. For space constraints, we omit the computation of the tables.

4. B-Coloring
In this section, we show how to decide whether a given graph has a b-coloring with k
colors. The difference in the tables is that M0 now represents the colors that do not have
b-vertices in Gt \ Xt. So, given t ∈ V (T), for each proper k-coloring f of Xt, and for
eachM = {M0, . . . ,Mp}, with Mi ⊆ [k] for every i, we say that ct(f,M) = 1 if and
only if there exists a k-coloring f ′ of Gt that extends f and satisfies:

1. For every c ∈ [k] \M0, there exists u ∈ V (Gt) \ Xt such that u is a b-vertex of
color c in f ′; and

2. For every vi ∈ Xt, we have f ′(NGt [vi]) = [k] \Mi.

Let r andM∅ be as before, and observe that G has a b-coloring with k colors if
and only if cr(∅,M∅) = 1. For space constraints, we comment only on how the tables
of forget nodes are computed. We choose these also because they are the ones that most
differ from the previous computations.

So, let t be a forget node with Xt = {v1, . . . , vp−1}, and t′ be its child, with
Xt = Xt′ \ {vp}. Also, let f : Xt → [k] and M = {M0, . . . ,Mp−1}. We need to
investigate the possibilities of vp being the sole b-vertex of some color not in M0, and of
vp not being a b-vertex at all. One can verify that all these possibilities are covered in the
following case analysis. Below, fc denotes the coloring obtained from f by coloring vp
with c, whileM′ denotes the set {M ′

0, . . . ,M
′
p}:

1. If there exist c ∈ [k] and M ′
p ⊆ [k] such that ct′(fc,M′) = 1, where M ′

i = Mi

for every i ∈ {0, . . . , p − 1}, then ct(f,M) = 1. This case covers the possibility
of vp either not being a b-vertex or not being the only b-vertex of some color
c ∈ [k] \M0;

2. If there exists c ∈ [k] \M0 such that ct′(fc,M′) = 1, where M ′
i = Mi for every

i ∈ [p− 1], M ′
0 = M0 \ {c} and M ′

p = ∅, then ct(f,M) = 1. This case covers the
possibility of vp being the only b-vertex of some color c ∈ [k] \M0;

3. Finally, if neither of the above conditions hold, then we can conclude that
ct(f,M) = 0.

References
Andrade, D. and Silva, A. (2021). On the Complexity of Subfall Coloring of Graphs. In

Anais do VI Encontro de Teoria da Computação, pages 70–73, Brasil. SBC.

Christen, C. A. and Selkow, S. M. (1979). Some Perfect Coloring Properties of Graphs.
Journal of Combinatorial Theory, Series B, 27(1):49–59.

Courcelle, B. (1990). The Monadic Second-Order Logic of Graphs. I. Recognizable Sets
of Finite Graphs. Information and computation, 85(1):12–75.

Cygan, M., Fomin, F. V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., and Saurabh, S. (2015). Parameterized Algorithms. Springer, 1st edition.

Dunbar, J., Hedetniemi, S., Hedetniemi, S., Jacobs, D., Knisely, J., Laskar, R., and Rall,
D. (2000). Fall Colorings of Graphs. J. of Combinatorial Mathematics and Combina-
torial Computing, 33:257–273.

Garey, M. R., Johnson, D. S., and Stockmeyer, L. (1974). Some Simplified NP-Complete
Problems. In STOC ’74, page 47–63. Association for Computing Machinery.

Harary, F. and Hedetniemi, S. (1970). The Achromatic Number of a Graph. Journal of
Combinatorial Theory, 8(2):154–161.

Irving, R. W. and Manlove, D. F. (1999). The B-Chromatic Number of a Graph. Discrete
Applied Mathematics, 91(1):127–141.

Jaffke, L., Lima, P. T., and Lokshtanov, D. (2021). B-Coloring Parameterized by Clique-
Width. In STACS 2021, volume 187 of LIPIcs, pages 43:1–43:15, Germany.

Kratochvı́l, J., Tuza, Z., and Voigt, M. (2002). On the B-Chromatic Number of Graphs.
Journal of Optimization Theory and Applications, 109:310–320.

Panolan, F., Philip, G., and Saurabh, S. (2017). On the Parameterized Complexity of
B-Chromatic Number. Journal of Computer and System Sciences, 84:120–131.

Telle, J. A. and Proskurowski, A. (1997). Algorithms for Vertex Partitioning Problems
on Partial k-Trees. SIAM J. Discret. Math., 10:529–550.

Vatshelle, M. (2012). New Width Parameters of Graphs. PhD thesis, The University of
Bergen.

