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1Instituto de Matemática e Estatı́stica – Universidade de São Paulo (USP)
São Paulo – SP – Brazil

rafaelzcl@ime.usp.br

Abstract. The high dimensionality of data may be a barrier to algorithmic ef-
ficiency, mainly because of the well known “curse of dimensionality” that im-
poses exponential time and/or memory complexity for algorithms. It is natural
then to search for ways to break this curse by relaxing the problem with approx-
imate versions and by finding good ways to reduce the dimension of data. Our
aim is to integrate and state slightly stronger results of approximation via di-
mension reduction for clustering under the ℓ22 metric. The dimension reduction
is achieved by combining randomized techniques (the Johnson-Lindenstrauss
Lemma) and deterministic techniques (the singular value decomposition).

1. Introduction
Let C ̸= ∅ be a family of non-empty sets of Rd and let A ⊂ Rd be a multiset with |A| = n.
The (ℓ22, C)-clustering problem in Rd is to find a set C ∈ C that minimizes the cost
function dist2(A,C) :=

∑
a∈A(dist(a, C))2, where dist(a, C) := inf {∥a− c∥ : c ∈ C}

and ∥ · ∥ is the usual Euclidean norm. We say that A is an instance and that the sets C are
solutions. The sets C∗ that minimize dist2(A,C∗) are called optimal solutions of A.

This problem is a general formulation for clustering problems under the ℓ22 metric.
Let k and j be non-negative integers. Some examples of known clustering problems that
fit this formulation are the following: k-means clustering, where the objective is to find a
set C of k points of Rd that minimizes dist2(A,C); best-fit j-subspace problem, where the
objective is to find a subspace C of dimension j such that it minimizes dist2(A,C); linear
(affine) projective clustering problem, also known as linear (affine) j-subspace k-cluster-
ing problem, where the objective is to find a set C that is the union of k linear (affine)
subspaces of dimension j that minimizes dist2(A,C). It is known that k-means clus-
tering is NP-hard for k = 2 [Aloise et al. 2009]. The best-fit j-subspace problem can
be solved in time O(min{nd2, n2d}) via singular value decomposition. Affine 2-sub-
space k-clustering is NP-hard to approximate for any multiplicative approximation factor
[Megiddo and Tamir 1982].

Some of these problems have algorithms with time dependence considered inef-
ficient on the dimension, and hence a natural idea for efficiently finding approximations
for them is to “reduce the dimension” of the instance A in the following way: consider
another instance Ã (called sketch of A) such that it lies in a low dimensional subspace
of Rd, and such that any optimal solution C̃∗ for Ã is a good approximation for A.
Solving the problem for Ã should be more efficient, and will give us approximations
for A. In [Sarlós 2006] this idea is used to obtain a randomized (1 + ε)-approxima-
tion for best-fit j-subspace in time o(min{nd2, n2d}), and in [Pratap and Sen 2018] it is
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used to obtain a randomized algorithm that finds a sketch of any instance of projective
clustering in linear time in n and d. In this work we present results of [Sarlós 2006]
and [Pratap and Sen 2018] in a unified way, and we make a small improvement on the
last result by generalizing it to a broader class of problems. We hope that our presentation
will help further development and applications.

2. Definitions and preliminaries

2.1. Matrix notation

It will be useful to represent any set or multiset A ⊂ Rd with |A| = n as a d × n matrix,
where each point is a column vector of this matrix in some fixed orthonormal basis. Sim-
ilarly we can see any d × n matrix as a multiset of Rd with cardinality n. We say that a
matrix A ∈ Rd×n has orthonormal columns if ATA is the identity matrix. Let B ∈ Rd×j .
We denote by πB(A) the d × n matrix we obtain by projecting orthogonally each col-
umn of A onto the subspace spanned by the columns of B. The Frobenius norm of A

is ∥A∥F :=
√∑d

i=1

∑n
j=1 A

2
ij, where Aij is the entry of row i and column j.

Definition 1. Let A ∈ Rd×n be an instance for (ℓ22, C)-clustering problem and let ε ∈
(0, 1) be fixed. We say that a matrix Ã ∈ Rd×n is an ε-sketch of A if there is a non-
negative constant ∆ = ∆(A, C, ε) such that for every C ∈ C we have

(1− ε) dist2(A,C) ≤ dist2(Ã, C) + ∆ ≤ (1 + ε) dist2(A,C). (1)

We say that a matrix Ã ∈ Rd×n is a weak ε-sketch of A if for every optimal solution C̃∗

for Ã and any optimal solution C∗ for A we have

dist2(A, C̃∗) ≤ (1 + ε) dist2(A,C∗). (2)

Note that A is an ε-sketch of A for all ε ∈ (0, 1) and with ∆ = 0, and that if Ã is
an ε-sketch of A, then it is also a weak 3ε-sketch if ε is small enough.

2.2. Singular value decomposition

Fix A ∈ Rd×n and let r = rank(A). Any such A has a singular value decomposition:
A = UΣV T , where U ∈ Rd×r and V ∈ Rn×r have orthonormal columns (called, respec-
tively, the left and right singular vectors of A) and Σ ∈ Rr×r is a positive diagonal matrix
containing the singular values of A in non-increasing order: σ1 ≥ σ2 ≥ · · · ≥ σr.

For any positive integer j < r, let Σj be Σ with its last r − j diagonal elements
zeroed out. Let Uj and Vj be, respectively, the matrices U and V with all but the first j
columns zeroed out. Then Aj := UΣjV

T = UjΣjV
T
j is a closest rank j approximation

of A in any unitarily invariant norm, in particular in the Frobenius norm:

∥A− Aj∥F = min{∥A−B∥F : B ∈ Rd×n, rank(B) = j}.

Some important properties of the SVD is that the non-null columns of Uj form an
orthonormal basis of an optimal solution of best-fit j-subspace problem for the instance A,
and the matrix Aj is equal to πUj

(A).



2.3. Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss Lemma [Johnson and Lindenstrauss 1984] is the following
result.

Theorem 2 (Johnson-Lindenstrauss Lemma). There exists a constant κ such that for any
set A of n points in Rd, any ε ∈ (0, 1) fixed and all integers r ≥ κε−2 log n there exists a
linear function f : Rd → Rr such that for every pair x, y ∈ A we have

(1− ε)∥x− y∥2 ≤ ∥f(x)− f(y)∥2 ≤ (1 + ε)∥x− y∥2. (3)

Linear functions that satisfy Theorem 2 can be found via random matrices: let β >
0 be fixed and let r be an integer such that r ≥ 4+2β

ε2/2−ε3/3
log n. If S ∈ Rr×d is a random

matrix where each entry is a independent random variable that assumes values uniformly
in {1/

√
r,−1/

√
r}, then the function v 7→ Sv satisfies Theorem 2 with probability at

least 1− n−β [Achlioptas 2003].

3. Low rank weak sketch for the best-fit j-subspace problem
Suppose without loss of generality that d ≤ n. Solving the best-fit j-subspace problem
for any instance A ∈ Rd×n with SVD requires just the first j left singular vectors, but
finding them takes time O(nd2). We present now a result from [Sarlós 2006] on finding
a (1 + ε)-approximation of Aj in linear time on n and d when j = O(1).

Theorem 3 ([Sarlós 2006]). Let A ∈ Rd×n be a matrix, let j < min{d, n} be a positive
integer and let ε ∈ (0, 1) be fixed. There is an integer r = Θ(ε−1j + j log j) such that
if S is an r × n random matrix where each entry is an independent random variable that
assumes values uniformly in {1/

√
r,−1/

√
r}, then with probability at least 1/2 we have

∥A− (πAST (A))j∥F ≤ (1 + ε)∥A− Aj∥F .

Computing (πAST (A))j can be done with two readings of the matrix A and in
time O(ndr + (n+ d)r2).

Note that πAST (A) is a weak 3ε-sketch of A for the best-fit j-sub-
space problem (see (2)). The probability of success in Theorem 3 can
be boosted to 1 − δ, for any δ ∈ (0, 1), since by Pythagoras’ Theo-
rem ∥A∥2F = ∥A− (πAST (A))j∥2F + ∥(πAST (A))j∥2F . Therefore if we run log2(1/δ)

independent instances of S and choose the one that maximizes ∥(πAST (A))j∥2F , we will
have a probability of success of 1− δ.

4. Low-rank sketch for the (ℓ22, C)-clustering problem
We now present a low-rank ε-sketch that can be found in time linear on n and d. We
say that a family C of subsets of Rd is m dimensional if for every C ∈ C there exists a
subspace L = L(C) such that C is contained in L. For example, the family C implicit in
the k-means clustering problem is k dimensional, while in the affine j-subspace k-clus-
tering it is (j + 1)k dimensional.



Theorem 4 (based on [Pratap and Sen 2018]). Let A ∈ Rd×n be an instance for
the (ℓ22, C)-clustering problem in Rd, where C is an m dimensional family and m <
min{d, n}. Let ε ∈ (0, 1) be fixed. There exists an integer s = ⌈ε−2m/8⌉ such that if
a matrix ÃT ∈ Rn×d is an orthogonal projection of AT to some subspace of dimension s
of Rn and satisfies ∥∥∥A− Ã

∥∥∥2

F
≤

(
1 +

ε2

8

)
∥A− As∥2F , (4)

then Ã is an ε-sketch of A with constant ∆ = ∥A− As∥2F .

Note that taking Ã = As trivially satisfies equation (4), and thus As is an ε-sketch
of A. But this takes time O(nd2), and as we saw in the previous section this can be im-
proved. Using Theorem 3 it follows that taking Ã = (πATST (AT ))Ts satisfies inequality (4)
with probability at least 1/2 and can be computed in time

O
(
nd(ε−4m+ ε−2m log(ε−2m)) + (n+ d)(ε−8m2 + ε−4m2 log2(ε−2m))

)
.

5. Final remarks
The ε-sketch is a powerful tool that can be applied to any (ℓ22, C)-clustering problem to
reduce the dimension of any instance. This is useful not only for approximation algo-
rithms, but also for succinct representation of data with a technique known as coresets. A
coreset construction for the projective clustering problem which uses the singular value
decomposition as dimension reduction tool is developed in [Feldman et al. 2020]. This
construction can be improved with Theorem 4 by accelerating the dimension reduction
step. More information can be found in [Pratap and Sen 2018].
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