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Abstract. Given a k-coloring S1, . . . , Sk ofG, a vertex in Si is said to be greedy
if it has neighbors in Sj , for every j < i. Thus, a Grundy coloring can be
seen as a coloring where every vertex is greedy. In contrast, a partial Grundy
coloring is defined as a coloring in which each color class has at least one
greedy vertex; the maximum number of colors in a partial Grundy coloring is
denoted by ∂Γ(G). In this paper, we investigate some conjectures about Grundy
colorings, already known not to hold, adapted to partial Grundy colorings. We
prove that, while two of them also do not hold, a third does. Namely, that given
a graph G and a matching M of G, we have that ∂Γ(G) ≤ 2∂Γ(G−M).

1. Introduction
The definitions and notations used in this article are standard and can be found in any
graph theory book. Also, we consider only simple graphs. Given two graphs G and H ,
the Cartesian product G�H is the graph with vertex set V (G�H) = V (G)× V (H) and
the following edge set:

E(G�H) = {(a, x)(b, y)|(a = b and xy ∈ E(H)), or (ab ∈ E(G) and x = y)}.

An independent set in a graph G is a subset S ⊆ V (G) such that uv /∈ E(G) for every
u, v ∈ S. A k-coloring of G is a partition P of V (G) into k sets and is proper if S is an
independent set for each S ∈ P . The chromatic number χ(G) of G is the minimum value
k for which G has a proper k-coloring. From now on, a proper coloring will be called
simply a coloring.

Graph coloring problems are perhaps the most studied problems in graph theory,
due to their practical and theoretical importance. It is one of the 21 Karp’s NP-complete
problems [Karp 1972], and deciding χ(G) ≤ k remains hard even for k ≥ 3 fixed. Given
the difficulty of this problem, an alternative is to apply heuristics to solve it. Many of
these heuristics give rise to parameters that study their worst case; among them, we are
interested in studying a variation of the greedy heuristic.

Given a k-coloring P of G, a function f : P → {1, . . . , k} is called a k-labeling
of P . We call an element C ∈ P a color class, and the value f(C) is called color (of C
in f ). Given C ∈ P and u ∈ C, we say that u is a greedy vertex in f if N(u) ∩ C ′ 6= ∅
for all C ′ ∈ P such that f(C ′) < f(C). We make an abuse of notation and write f(u)
to denote f(C), where u ∈ C. If all vertices of G are greedy in f , we say that f is
a Grundy coloring, and we say that f is a partial Grundy coloring if each C contains



at least one greedy vertex for every C ∈ P . The largest k for which G has a Grundy
coloring is called Grundy number of G and is denoted by Γ(G), while the maximum
k for which G has a partial Grundy coloring is called the partial Grundy number of G
and is denoted by ∂Γ(G). These parameters were defined in [Christen and Selkow 1979]
and [Erdős et al. 2003], respectively, and, unlike Grundy colorings, much can still be
learned about partial Grundy colorings. In this paper, we investigate the adaptation to
partial Grundy colorings of three conjectures, now known not to hold, about the Grundy
number of graphs, in particular of the Cartesian product of graphs.

The first conjecture of interest is the following, proved not to hold
in [Campos et al. 2012] by the construction of a counterexample of a graph H such that
Γ(H) = 3 and Γ(K2�H) = 7.

Conjecture 1 ([Asté et al. 2010], refuted in [Campos et al. 2012]). For every pair of
graphs G and H , it holds that Γ(G�H) ≤ (∆(G) + 1)Γ(H).

Conjecture 1 had actually been proposed as a generalization of the following con-
jecture. Hence the example given in [Campos et al. 2012] refutes also this conjecture.

Conjecture 2 ([Balogh et al. 2008], refuted in [Campos et al. 2012]). For any graph H ,
Γ(K2�H) ≤ 2Γ(H).

As done in [Campos et al. 2012], we refute the analogue of both conjectures by
presenting a graph H that satisfies ∂Γ(H) = 2 and ∂Γ(K2�H) = 5 (see Figure 1a).
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(a) A graph H with ∂Γ(H) = 2 and a partial Grundy

coloring of K2�H with 5 colors.
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(b) A partial Grundy coloring of S3�K1,3 with 4 colors.

Additionally, in the following theorem we give an infinite class of graphs that
do not satisfy the analogue of Conjecture 1. Given a positive integer n, let Sn denote
the graph with no edges and n vertices. For n ≥ 2, the theorem below implies that
∂Γ(Sn�K1,n) ≥ n + 1 > 2 = (∆(Sn) + 1)∂Γ(K1,n), thus disproving the analogue of
Conjecture 1.

Theorem 1. Let n ≥ 2. Then, ∂Γ(Sn) = 1, ∂Γ(K1,n) = 2 and ∂Γ(Sn�K1,n) = n+ 1.

The third and last conjecture of interest is the one below. The credits are given to
Havet and Zhu in [Campos et al. 2012], but without an explicit citation.

Conjecture 3 (Havet and Zhu, refuted in [Campos et al. 2012]). If G is any graph and
M is a matching in G, then Γ(G) ≤ 2Γ(G−M).

Observe that Conjecture 3 implies Conjecture 2. This is because if Conjecture 3
is valid, taking G = K2�H and M the matching such that G −M = S2�H , it follows
that Γ(K2�H) ≤ 2Γ(S2�H). As it is known that Γ(S2�H) = Γ(H), the result follows.



Interestingly enough, this is not the case for partial Grundy colorings due to the fact that
∂Γ(Sn�H) ≤ ∂Γ(H) does not necessarily hold, as we have seen in Theorem 1. Indeed,
we prove that the analogue of Conjecture 3 holds for partial Grundy colorings, despite the
fact that the analogue of Conjecture 2 does not.

Theorem 2. Let G be a graph and M be a matching in G. Then, ∂Γ(G) ≤ 2∂Γ(G−M).

The paper is organized as follows. In Sections 2 and 3, we give outlines of the
proofs of Theorems 1 and 2, respectively. In Section 4 we make our final comments.

2. Outline of the proof of Theorem 1
Note that, fixing n ≥ 1, we have ∂Γ(K1,n) = 2, ∂Γ(Sn) = 1, and because ∆(G�H) =
∆(G)+∆(H), we get ∂Γ(Sn�K1,n) ≤ ∆(Sn�K1,n)+1 = ∆(Sn)+∆(K1,n)+1 = n+1.

To prove that ∂Γ(Sn�K1,n) ≥ n+1, we provide a partial Grundy (n+1)-coloring
of Sn�K1,n. Note that Sn�K1,n can be seen as a galaxy of n stars. We can then color
this graph giving each center ui of the i-th star the color i+ 1 for each i ∈ {1, . . . , n} and
color the neighborhood N(ui) in a way that all colors in {1, . . . , i} are used. So each ui
is a greedy vertex and ∂Γ(Sn�K1,n) = n+ 1 follows. See Figure 1b for an example.

3. Outline of the proof of Theorem 2
Let f be a partial Grundy labeling of coloring P of G with k = ∂Γ(G) colors. We show
that there is a partial Grundy coloring of G −M with at least k/2 colors. The general
idea of the proof is to remove one edge of M at a time, making sure that not too many
colors containing greedy vertices are lost; such a color is called a greedy color. For this,
observe that, given uv ∈M and supposing f(u) > f(v), the only case where the removal
of uv can decrease the number of greedy colors is when u is the only greedy vertex in
color class f(u), and v is the only neighbor of u in f(v). Intuitively, our proof consists
in showing that such situation can happen at most k/2 times. In order to formalize our
proof, we need further definitions.

Given uv ∈ M , with f(u) > f(v), we say that u is the leading vertex of uv. We
say that u is a leader in color class C if u is a greedy vertex and is a leader of some
edge uv ∈ M . If uv ∈ M with leader u is such that u is greedy and v is the only
neighbor of u in f(v), then we say that uv is dangerous for u. We say that color class C
is endangered if every greedy vertex in C is incident to some dangerous edge. Finally,
for each endangered color class C, we choose exactly one of its greedy vertices, uC , to
try to keep greedy throughout the proof. A non-endangered color class is called saturated
if it is incident to M . We denote by D(f,M) the set of endangered color classes and
by S(f,M) the set of saturated color classes. Also, denote by d(f,M) the number of
endangered color classes, and by s(f,M) the number of saturated color classes. When f
and M are clear from the context, we omit them from the notation. We start by proving:

Claim 1. We can assume that every edge of M is dangerous.

Claim 2. s ≤ k/2.

We then prove, by induction on d − s, that ∂Γ(G −M) ≥ k − s. The theorem
follows by Claim 2. When d − s = 0, since the removal of each edge makes us lose
exactly one color class (the endangered one), and since we have d = s endangered colors,



it follows that ∂Γ(G−M) ≥ k− d = k− s. For d− s > 0, the technique consists in first
relabeling P by moving some color to the last position. By case analysis we can make
sure that the difference d− s decreases, so we can apply induction and obtain the desired
coloring.

Let us take just one of these cases in order to give a better idea of how to proceed.
Consider then that ∂Γ(G−M) ≥ k − s holds whenever d− s ≤ `, and let f be a partial
Grundy labeling of P such that d − s = ` + 1. By the pigeonhole principle, there must
be a color class incident to 2 edges of M , say C. Suppose that C is a saturated color
(i.e., it does not have a leader), and let u1v1, u2v2 ∈ M be such that {v1, v2} ⊆ C. Let
f ′ be obtained from f by relabeling every C ′ such that f(C ′) > f(C) with f(C ′) − 1,
and relabeling C with k. Suppose now that f ′ is a partial Grundy coloring, i.e., after
relabeling C in order to become the highest color, we get that C contains some greedy
vertex. Because now u1 and u2 are the leaders of edges u1v1 and u2v2, we get that at most
one of these edges is now dangerous. One can verify that we get d(f ′,M) ≤ d(f,M)−1,
while s(f ′,M) ≥ s(f,M); hence d(f ′,M) − s(f ′,M) ≤ d(f,M) + s(f,M) − 1 ≤ `,
and the result follows by induction hypothesis. The other cases can be proved similarly.

4. Conclusion
In this paper, we prove that, given a graph G and a matching M of G, there exists a partial
Grundy coloring of G −M with at least ∂Γ(G)/2 colors. This shows that the analogue
of Conjecture 3 to partial Grundy colorings holds, while we know that Conjecture 3 itself
does not hold. It is interesting to note that this difference of behaviour is mainly due to the
fact that Γ(Sn�H) ≤ Γ(H), while the same is not true when dealing with partial Grundy
colorings, as it is seen in Theorem 1.

Additionally, even knowing that Conjecture 3 does not hold for general graphs,
it would be interesting to know whether there are graph classes in which it holds (for
instance, it is known to hold for complete bipartite graphs), or whether it is possible to
decide when the removal of a given matching cannot decrease the Grundy number by
more than half.
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