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Abstract. Minimizing the spread of an infection is a key strategy for controlling
an epidemic. In urban regions, the spread can be reduced by restricting move-
ment between adjacent districts. We propose a non-linear integer programming
model to minimize the number of infected people in a network. The network
considers the relations between districts and the movement of people in a city.
We develop methods to build and improve solutions. The model and the methods
are evaluated on an instance based on real data. Finally, the results indicate
how challenging the problem is from an optimization and numeric perspective.

1. Introduction
After the first cases of COVID-19 were recorded in December 2019 in China, the infec-
tion rapidly spread, posing a great danger to healthcare systems and the world economy.
The measures adopted by many countries in response consisted of limiting the operation
of establishments and encouraging their citizens to stay at home, aiming to reduce contact
between individuals and, thus, slow contagion. With these actions, however, comes the
question of when is it safe to reopen, which places may be reopened, and what activities
may be allowed [Chang et al. 2021]. To answer these questions, epidemiological models
have become crucial. With a large volume of data, they can identify the most vulnerable
socioeconomic groups, point classes of establishments most likely to spread the infec-
tion, and find patterns to maximize the effectiveness of restrictions [Chang et al. 2021] .
Measures that reduce the infection are important instruments in the fight against COVID-
19, as they both reduce the number of infected people and help guarantee treatment for
people who eventually do become infected [Chang et al. 2021]. As a result, to predict
numbers such as individuals infected by a disease has become fundamental to reduce the
negative impacts of the pandemic [Liu et al. 2020]. In this work we present a non-linear
integer model of an epidemiological problem where the goal is to minimize the number
of infected people over time in a connected graph. Moreover, we use a heuristic to find a
feasible solution and an optimization tool over a real instance to analyze the first results.

2. Model
Our model of the problem, based on [Franco 2021], consists of minimizing the infection
in a network with neighborhoods interconnected by roads, represented by a graph in which
the neighborhoods are the vertices (with an associated population) and each road between
neighborhoods i and j is a pair of arcs (i, j) and (j, i). The epidemiological model chosen

*This work was supported by Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina.



was the SIR model, which divides the population into three groups: susceptible, which
can become infected; infected, who can transmit; and recovered, which do not transmit
and cannot be infected. Taking this into account, the population of each vertex i for
each instant t consists of the number of susceptible St

i , infected I ti and recovered Rt
i.

This choice was made before the confirmation that certain COVID variants are capable of
reinfecting. Besides, any other epidemiological model that consider reinfection, such as
SIS, could be assumed. Movement between vertices is also modeled, but it is restricted
so that people from vertex i can only visit adjacent vertices of i. We also define for each
arc (i, j) the values βi→j , that represent the percentage of people residing at vertex i and
visiting vertex j, i.e., that “use the road (i, j)”. Also, a binary variable xi→j is associated
to each arc (i, j). We constrained xi→j to have the same value as xj→i. The value in
the variable xi→j indicates that the traffic is blocked if xi→j = 0 or free if xi→j = 1.
It is relevant to note that this construction makes the graph more easily analyzed as a
directed graph from the perspective of the β values and as an undirected graph from the
perspective of the x variables. Thus, when we refer to a tree or connected components
in this graph, we are analyzing it in an undirected way. Blocked and free streets create
a variation in the number of people at each of the vertices, affecting contagion. In our
model, people circulating at each vertex i are divided into two groups: those who came
from a neighboring vertex i (from χ(i)) and those who live and have stayed in i. For
the first group, for each neighboring vertex j ∈ χ(i), the number of people coming to
i obeys the following formulas: St

j→i = βj→ix
t
j→iS

t
j

1. The second group, on the other
hand, consists of the people who did not leave the vertex i and, therefore, it is sufficient
to subtract the percentage of people who left: St

i→i = (1 −
∑

j∈χ(i)(βi→jx
t
i→j))S

t
i . It

should be noted that if a road is blocked, the percentage of people who intended to use
it is added to the vertex where they live. Thus, the number of people of each category
circulating in i is given by: Ṡt

i = St
i→i +

∑
j∈χ(i) S

t
j→i. The goal is to minimize the

number of infected people over time. It is necessary to consider for each vertex and
instant the number of people who recovered and the number of newly infected people,
which is a ratio of the number of encounters between susceptible and infected people:
St+1
i = St

i − vEt
i(Ṡ

t
i , İ

t
i , Ṙ

t
i); I
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i + ξI ti . The
constants v and ξ are the virulence and the recovery ratio, respectively. As the percentage

of infected people circulating in a vertex i is
İ ti

Ṡt
i + İ ti + Ṙt

i

, we take this value as the

proportion of the susceptible population who have an encounter with an infected person
at this vertex. The expected number of encounters for the population of vertex i (and
where the non-linearity lies in our model) is therefore
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We have a limitation on how we choose to block the streets, however: we must
ensure that it is possible to access all neighborhoods, that is, the subgraph induced by the
free streets must be connected. We start to obtain this by adding the following constraints:∑

(i,j)∈E fi→j+1 =
∑

(j,i)∈E fj→i for each vertex i ̸= s; and
∑

(s,j)∈E fs→j = n−1, where
fi→j represents an integer flow through the arc (i, j), and n is the number of vertices in

1To get the other two formulas for the first group, corresponding to Itj→i and Rt
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the graph. These constraints ensure over f , an s-branching flow, with some source vertex
s (see e.g. [Carvalho et al. 2020]). Note that each s-branching flow induces a spanning
tree in the graph when we take as edges every pair of arcs (i, j) where fi→j > 0 or
fj→i > 0. Since our arcs come in pairs, the graph structure is essentially maintained.
The vertex s can be chosen arbitrarily, as a consequence of the following assertion: Let
G be a connected graph, and T a spanning tree of G. For any vertex v in T , there is an
v-branching flow that induces T . To close the connectivity constraints with the feasible
solutions and to integrate it with contagion, we added restrictions so that a pair of arcs is
not blocked when there is flow over it: for every arc (i, j), we have nxi→j ≥ fi→j , (n is
the total number of vertices). Notice that this does not imply that the obtained (possibly
optimal) graph has to be a spanning tree, only that it is connected. To summarize, the
non-linear optimization program desires to minimize

∑
i∈V I t+1

i , where V is the set of
vertices of the input graph, subject to the circulation people constraints (Ṡt

i , İ
t
i , Ṙ

t
i for

each vertex i) and the connectivity graph constraints. The non-linearity is in the objective
function and an important question is to know whether it is possible to turn this model
linear. An answer for this question is not in the scope of this work.

3. A starting solution with iterated search

To give the solver an upper bound, we provide an initial spanning tree to the software
and calculate the number of infected people considering that tree. In addition, we try to
find spanning trees that decrease the number of infected people using an iterative search
process that we will describe next. First, since T is a spanning tree of a graph G, let us
define an adjacent spanning tree of T as a spanning tree that differs by only one edge.
Then we proceed as follows. We start with any spanning tree T . We search among the set
of all adjacent spanning trees of T and choose the tree T ′ that minimizes the number of
infected people. If the infected value of T ′ is less than that of T , T ′ takes the place of T
and we repeat the procedure. Otherwise, we stop. We can repeat this process for a given
number of iterations, defining several local minima. Naturally, we only keep what leads
to the least number of infected people. The specific process of searching through all of
the adjacent trees deserves more detail. Given a spanning tree T , we choose an edge of
the graph that is not in T and add it to T . This forms a cycle (T plus the inserted edge).
For each edge in this cycle, we remove it from the tree and recalculate the number of
infections, saving the tree that minimizes it. We repeat it, choosing another edge until all
edges that were not in the original tree have been chosen.

4. Computational results

To evaluate the solution method and the model, we build an instance based on real data
from the city of Florianópolis (SC - Brazil). The data was collected from Covidômetro2

and the 2010 census, according to the IBGE database. Covidômetro contains data regard-
ing confirmed, active, recovered and death cases related to COVID-19 of each city district.
The IBGE database was used to define the population of each district. For the few incon-
sistent cases of district definition, we grouped districts based on proximity and estimated
population based on current active cases. To solve the optimization problem we use the
SCIP solver [Bestuzheva et al. 2021], through JuMP [Dunning et al. 2017]. SCIP is one

2https://covidometrofloripa.com.br/



of the best performing open source solvers and has an free academic license. It also allows
the non-linear constraints present in our model. As an initial upper bound, we provide a
spanning tree, as described in Section 3. The complete implementation can be found in
https://github.com/weslyca/TCC. All the experiments were performed on an
Aspire ES1-572 Acer Notebook, with an Intel(R) Core(TM) i3-6006u, 2.00GHz and 4GB
of RAM. Regarding the software, we use Python 3.9.9 and Julia 1.7.0 with JuMP 0.22.1.
Considering a 16 regions graph, the best value obtained was 622.238778 (14.24% of gap
after of 4 × 106 branching nodes); however, when we calculate the number of infected
people, we obtain 622.287136, which is different and slightly higher than the best tree
returned by the heuristic. This difference indicates a potentially challenging model from
a numerical perspective that we decide to report here. This effect could be reduced by
tuning some parameters of the solver. However, there is a trade-off between numerical
precision and solution time which should be further evaluated.

5. Conclusion
In this work, we expanded a model of contagion in a network of neighborhoods. We
developed a formulation of the model as a non-linear programming problem in order to
find an optimal choice of roads to block. The results illustrate the difficulty in dealing with
the complexity of the problem and with numerical issues. The model could be modified to
account for reinfections by adopting a corresponding epidemiological model. To finish,
the circulation of people in the present model is restricted to the adjacent vertices. We
invite the reader to think in a similar model that accepts walks of any size.
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