
Instances for the Maximum Clique Problem with Hardness
Guarantees

Victor Campos1, Renato Carmo2, Rodrigo Nogueira1

1ParGO Group, Universidade Federal do Ceará (UFC)
2Departamento de Informática da Universidade Federal do Paraná (UFPR)

victoitor@ufc.br, renato@inf.ufpr.br, nogrrodrigo@alu.ufc.br

Abstract. Branch and bound algorithms which use (an estimate on) the chromatic
number as the bounding function are reported among the best known exact
algorithms for the maximum clique problem. Their average running time is
known to be quasi-polynomial and describing families of instances which induce
exponential running time for these algorithms is a non-trivial issue. We describe
two such families of graphs. We prove that graphs in the first family induce
asymptotically higher running time than the average for algorithms whose running
time is Ω(𝑐(𝐺)) where 𝑐(𝐺) is the number of cliques in 𝐺. We also prove that
graphs in the second family induce exponential running time for branch and
bound algorithms which use the chromatic number as the bounding function.

1. Introduction
For a graph 𝐺, let 𝜔(𝐺) denote the maximum size of a clique in 𝐺. The Maximum
Clique problem (MC) is the problem of finding a maximum clique in a given graph 𝐺.
The decision version of MC, denoted by CLIQUE, aims to decide whether 𝜔(𝐺) ≥ 𝑘

for a given graph 𝐺 and an integer 𝑘 . CLIQUE is a fundamental NP-complete prob-
lem [Karp, 1972] which is also 𝑊 [1]-complete under the natural parameterization over
𝑘 [Downey and Fellows, 1995]. Besides being NP-hard, MC is also inapproximable to
within a factor of 𝑛1−𝜀, for any 𝜀 > 0 (unless 𝑃 = 𝑁𝑃) [Zuckerman, 2006].

Despite these rather disheartening theoretical facts, several exact algorithms
for MC are reported as solving instances of practical interest and considerable size in
various application domains quite well (for more details, we refer the reader to a sur-
vey [Bomze et al., 1999] and a newer result [San Segundo et al., 2016].) Typically, the per-
formance of these algorithms is evaluated experimentally: standard sets of instances (such
as those from the DIMACS Second Implementation Challenge [Johnson and Trick, 1996])
as well as random graphs are used, the running time and other execution parameters are
reported and then compared to other published data. The experimental results reported
in all these cases seem surprising in the light of the theoretical results mentioned above.
This apparent contradiction was investigated in [Züge and Carmo, 2018], which shows
that branch and bound algorithms for MC have quasi-polynomial average running time
(under G(𝑛, 𝑝)for fixed 𝑝.) This leaves open the question of whether these (and other)
algorithms do have subexponential running time in the worst case or not. We approach
this question by exhibiting instances candidate to inducing exponential running-time for
these algorithms.

A clique subinstance for a graph 𝐺, which we call simply a subinstance for 𝐺,
is a pair (𝑄, 𝐾) of disjoint subsets of 𝑉 (𝐺) where 𝑄 is a clique and every vertex of 𝐾

is adjacent to every vertex of 𝑄. Each subinstance (𝑄, 𝐾) asks for the maximum clique
𝐶 in 𝐺 such that 𝑄 ⊆ 𝐶 ⊆ 𝑄 ∪ 𝐾 . Note that the instance 𝐺 of MC corresponds to the
subinstance (∅, 𝑉 (𝐺)). When a subinstance (𝑄, 𝐾) for 𝐺 is not solved, a vertex 𝑣 in 𝐾 ,
called the pivot, is chosen and this subinstance is broken into two: (𝑄 ∪ {𝑣}, 𝐾 ∩ 𝑁 (𝑣))
which considers all cliques containing 𝑣 and (𝑄, 𝐾 − 𝑣) which considers all cliques which
do not contain 𝑣. We call a branch and bound algorithm for MC standard if it breaks
subinstances using pivot vertices in this way. A clique search tree 𝑇 for a graph 𝐺 is a
binary tree whose nodes are subinstances of 𝐺 such that: the root of 𝑇 is the subinstance
(∅, 𝑉 (𝐺)); a subinstance (𝑄, 𝐾) is a leaf of 𝑇 if, and only if, 𝐾 = ∅; and, for every non-leaf
subinstance (𝑄, 𝐾), there is a vertex 𝑣 ∈ 𝐾 such that its children are (𝑄 ∪ 𝑣, 𝐾 ∩ 𝑁 (𝑣))
and (𝑄, 𝐾 − 𝑣). We say that an execution of a standard branch and bound algorithm for MC
on 𝐺 is contained in a clique search tree 𝑇 of 𝐺 if it considers a set of clique subinstances
which induces a connected subgraph of 𝑇 containing the root and every choice of pivot
in the algorithm is the same as in 𝑇 . Using this notation, the following can be obtained
from [Züge and Carmo, 2018].

Proposition 1. Let 𝐺 be a graph and C be the set of all its cliques. If 𝑇 is a clique
search tree of 𝐺, then 𝑇 has precisely 2|C| − 1 nodes. Furthermore, each execution of any
standard branch and bound algorithm for MC on 𝐺 is contained in some clique search tree
of 𝐺.

The part of the analysis in [Züge and Carmo, 2018] which concerns us stems from
the fact that almost every graph (under G(𝑛, 𝑝)for fixed 𝑝) has a quasi-polynomial number
of cliques. Consequently, any standard branch and bound algorithm for MC will have a
quasi-polynomial running time for almost any instance (as long as it takes no more than
quasi-polynomial time for each subinstance.) Our first family of hard instances is one
that provides graphs with an exponential number of cliques. This family may be useful
in discerning whether the running time of a particular algorithm is proportional to the
number of cliques in the graph or if it really reduces substantially the search space through
the heuristics incorporated in it.

2. Instances with Exponential Number of Cliques
The following construction is based on a reduction from the Vertex Coloring problem to
MC. It can be derived directly from [Campêlo et al., 2008] and a similar result has been
observed in [Cornaz and Jost, 2008]. Here a coloring means a partition of the vertices into
(unlabeled) stable sets.

Lemma 2. Let 𝐺 be a graph with 𝑛 vertices and 𝑚 non-edges. We can build a graph 𝐺∗

with 𝑚 vertices together with a bijection 𝑓 from cliques of 𝐺∗ to colorings of 𝐺 such that,
if 𝐶 is a clique in 𝐺∗, then 𝑓 (𝐶) is a coloring of 𝐺 with 𝑛 − |𝐶 | colors.

We observe that an interesting aspect of this reduction is that the number of cliques
in 𝐺∗ is equal to the number of colorings of 𝐺.

Theorem 3. For any 0 ≤ 𝛼 < 1/3 and 𝑛 ∈ ℕ, if 𝑚 ≤
(𝑛
2
)
(1 − 𝑛−𝛼), then the expected

number of colorings of 𝐺 ∼ G(𝑛, 𝑚) is 𝑛Θ(𝑛) .

Using the construction from Lemma 2 on G(𝑛, 𝑚), for carefully chosen values of
𝑛 and 𝑚, we get the following.

Corollary 4. For any 0 ≤ 𝜀 < 1/10 and 𝑛 ∈ ℕ, there is a random process to build a graph
with 𝑛 vertices and whose expected number of cliques is 𝑛Θ(𝑛3/5−𝜀) .

Let 𝑝 be a constant,𝐺 ∼ G(𝑛, 𝑝) and𝐺∗ be obtained from𝐺 using the construction
of Lemma 2 with 𝑁 = |𝑉 (𝐺∗) |. Based on a much stronger result from [Pittel, 1982],
[Züge and Carmo, 2018] point out that the number of cliques in 𝐺 is 𝑛Θ(log 𝑛) with high
probability. In contrast, Theorem 3 tells us that the expected number of cliques in 𝐺∗ is
𝑁Θ(

√
𝑁) . The problems of finding a maximum clique and a minimum vertex coloring were

considered in the second DIMACS Implementation Challenge [Johnson and Trick, 1996]
and coloring was considered to be much harder to solve than CLIQUE. Since solving MC
in 𝐺∗ is equivalent to solving a coloring problem on 𝐺, this transformation gives a clue on
why G(𝑛, 𝑝) graphs are harder instances for minimum coloring than for maximum clique.

3. Instances with Persistent Chromatic Gap
Let 𝜒(𝐺) denote the chromatic number of a graph 𝐺. We say that a standard branch and
bound algorithm is 𝜒-bounded if the only way to discard a subinstance (𝑄, 𝐾) of 𝐺 is by
comparing a known clique in 𝐺 to an upper bound on 𝜒(𝐺 [𝑄 ∪ 𝐾]). Some of the best
algorithms for MC are indeed standard and 𝜒-bounded. Note that if 𝐾 = ∅ in a subinstance
(𝑄, 𝐾), then we have 𝜒(𝐺 [𝑄 ∪ 𝐾]) = |𝑄 | ≤ 𝜔(𝐺). For a clique search tree 𝑇 of 𝐺, the
𝜒-pruned subtree of 𝑇 , denoted by 𝑇𝜒, is the unique minimal subtree of 𝑇 that contains the
root and whose leaves are subinstances (𝑄, 𝐾) such that 𝜒(𝐺 [𝑄 ∪ 𝐾]) ≤ 𝜔(𝐺).
Proposition 5. For any execution E of a standard 𝜒-bounded branch and bound algorithm
for MC on 𝐺, there exists a clique search tree 𝑇 of 𝐺 such that E is contained in 𝑇 and the
subinstances considered in E contain 𝑉 (𝑇𝜒).

Let 𝑛 be a multiple of 5. We define 𝐿𝑛 to be the 𝑛-vertex graph obtained from the join
of 𝑛/5 copies of 𝐶5. Although not using the notation introduced here, [Lavnikevich, 2013]
essentially proves that the 𝜒-pruned subtree of every clique search tree of 𝐿𝑛 has at least
2𝑛/5 nodes. By using Proposition 5, we get that 𝐿𝑛 induces exponential running-time for
any 𝜒-bounded standard branch and bound algorithm. These instances, however, can be
efficiently solved through a rather simple pre-processing algorithm (discussed bellow.) Our
second family of hard instances also induces exponential running-time for these algorithms
and is immune to this pre-processing.

We know that 𝜔(𝐺) is the maximum clique number over the components of 𝐺.
Moreover, if𝐺 is the join of two other graphs, then the clique number of𝐺 is the sum of the
clique number of these graphs. These two observations can be used to pre-process a graph
𝐺 by constructing 𝐺 and checking the connectivity of both. If the graph is separated into
smaller subgraphs, this procedure can be iterated until every subgraph is both connected
and has a connected complement and this procedure can be done in polynomial time.
We note that finding 𝜔(𝐿𝑛) becomes easy by using this pre-processing technique as it
reduces to the problem of finding the maximum clique in the 𝑛/5 copies of 𝐶5. This
observation leads us to look for instances which are connected and whose complements
are also connected. Our second construction is based on the following result.

Theorem 6. If 𝐺 is a spanning subgraph of 𝐿𝑛 with no stable set of size three and
𝛿(𝐺) ≥ 𝑛 − 1 − 𝑑, then the 𝜒-pruned subtree of every clique search tree of 𝐺 has at least
2𝑛/(5𝑑)+1 − 1 nodes.

We note that 𝐿𝑛 is (𝑛 − 3)-regular and, if 𝐺 is a spanning subgraph of 𝐿𝑛 with
𝛿(𝐺) ≥ 𝑛 − 3, then 𝐺 is equal to 𝐿𝑛. Since the complement of 𝐿𝑛 is disconnected, we
are interested in Theorem 6 when 𝑑 ≥ 3. We also note that when 𝑑 = 3, there are many
strategies to make the random instance.

Corollary 7. For any 𝑛 ∈ ℕ, there is a random process to build a connected graph 𝐺 with
𝑛 vertices whose complement is connected and such that the 𝜒-pruned subtree of every
clique search tree of 𝐺 has Ω(2𝑛/15) nodes.

Finally, we thank the anonymous reviewers for the suggestions that helped improve
and clarify this text.

References
Bomze, I. M., Budinich, M., Pardalos, P. M., and Pelillo, M. (1999). The maximum

clique problem. In Du, D.-Z. and Pardalos, P. M., editors, Handbook of Combinatorial
Optimization: Supplement Volume A, volume 4, pages 1–74. Springer, Boston, MA.

Campêlo, M., Campos, V., and Corrêa, R. (2008). On the asymmetric representatives for-
mulation for the vertex coloring problem. Discrete Applied Mathematics, 156(7):1097–
1111.

Cornaz, D. and Jost, V. (2008). A one-to-one correspondence between colorings and stable
sets. Operations Research Letters, 36(6):673–676.

Downey, R. and Fellows, M. (1995). Parameterized computational feasibility. In Clote,
P. and Remmel, J. B., editors, Feasible Mathematics II, pages 219–244, Boston, MA.
Birkhäuser Boston.

Johnson, D. and Trick, M., editors (1996). Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, October 11–13, 1993, volume 26. American
Mathematical Society, Boston, MA, USA.

Karp, R. (1972). Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer.

Lavnikevich, N. (2013). On the complexity of maximum clique algorithms: usage of
coloring heuristics leads to the Ω(2𝑛/5) algorithm running time lower bound.

Pittel, B. (1982). On the probable behaviour of some algorithms for finding the stability
number of a graph. Mathematical Proceedings of the Cambridge Philosophical Society,
92:511–526.

San Segundo, P., Lopez, A., and Pardalos, P. M. (2016). A new exact maximum clique
algorithm for large and massive sparse graphs. Computers & Operations Research,
66:81–94.

Zuckerman, D. (2006). Linear degree extractors and the inapproximability of max clique
and chromatic number. In Proceedings of the Thirty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’06, pages 681–690, New York, NY, USA. Association
for Computing Machinery.

Züge, A. and Carmo, R. (2018). On comparing algorithms for the maximum clique
problem. Discrete Applied Mathematics, 247.

	Introduction
	Instances with Exponential Number of Cliques
	Instances with Persistent Chromatic Gap

