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Abstract. An identifying code (id code, for short) of a graph is a dominating set
such that all vertices have a distinct closed neighbourhood within the code. We
present a lower bound for the minimum density of id codes of infinite hexagonal
grids with a finite number of rows. We also show that every id code that does not
induce a trivial component has density at least 3/7. Finally, we show that when
such grids have two rows this minimum density is precisely 9/20. The results on
lower bounds are proved using the discharging method.

1. Introduction
The concept of id codes was introduced by [Karpovsky et al. 1998] to identify a faulty
processor in a multiprocessor system. The vertices of an id code correspond to spe-
cial processors (the controllers) that are able to check themselves and their neighbours
to identify a faulty processor. Problems on id codes have been studied on finite and
infinite graphs, being of great interest both from theoretical as well as practical view-
point. We refer the reader to an updated bibliography maintained by [Lobstein 2021]
covering this topic and related ones. One of the problems that has raised much inter-
est on this concept is that of finding id codes of minimum density, a problem known
to be NP-hard [Charon et al. 2003]. On infinite graphs, these studies have considered
grids with infinite or with a finite number of rows. Many results were obtained for
square, triangular and king grids in both cases. Results on the minimum density of id
codes of hexagonal grids are known only for grids with infinite number of rows. It
has been shown that this parameter, denoted d∗(GH), satisfies 5/12 ≤ d∗(GH) ≤ 3/7
[Cukierman and Yu 2013, Cohen et al. 2000]. No such results have appeared in the liter-
ature for hexagonal grids Hk with fixed number k of rows. We show that every id code
that does not induce a trivial component has density at least 3/7. We also show that
d∗(Hk) ≥ 2/5, for all k ≥ 2, and d∗(H2) = 9/20. We use the discharging method to
prove three lower bounds. We present the main idea behind this method and show how it
is used to obtain the results in this context.

1.1. Hexagonal Grids, Identifying Codes and Minimum Density
A hexagonal grid, denoted GH , is an infinite graph with vertex set V = Z × Z and edge
set E = {(u, v) : u = (i, j), u−v ∈ {(±1, 0), (0, (−1)i+j+1)}}. A hexagonal grid with k
rows, k ≥ 2, denoted Hk, is a graph isomorphic to the subgraph of GH induced by the
vertex set Z × {1, . . . , k} (see Figure 1). Let G be a connected graph. If v is a vertex of



G, and r is a natural number, then Nr(v) denotes the set of neighbors of v at distance at
most r, and Nr[v] = Nr(v) ∪ {v}. When r = 1, we omit it, and write N(v) and N [v].
Given C ⊆ V (G), let C[v] = N [v] ∩ C. An id code of G is a set C ⊆ V (G) such that:
C[v] 6= ∅, for every vertex v of G, and C[v] 6= C[w], for any pair of distinct vertices v, w
of G. Not all graphs have an id code, those which have are called identifiable. If C is an
id code, then we say that C[v] is the identifier of v. If G is a finite or infinite graph, of
bounded degree, the density d(C,G) of an id code C of G is defined below. The minimum
density of an id code of G, denoted by d∗(G), is defined as d∗(G) = infC∈C{d(C,G)},
where C is the set of all id codes of G.

d(C,G) = lim sup
r→∞

|C ∩Nr[v0]|
|Nr[v0]|

, where v0 is an arbitrary vertex in G.

1.2. Discharging Method

The discharging method is a proof technique in graph theory that has been used in many
different contexts, such as in graph coloring, decomposition, embedding, geometric and
structural problems. For a guide on the use of the this method to prove results on col-
oring and other structural properties of graphs, see [Cranston and West 2017]. Roughly
speaking, to prove results on a graph G, this method involves two phases: charging and
discharging. In the charging phase, we assign charges (a rational number) to certain
structures of G using a charging rule, which describes the value of the charge and the
structures of G which will receive the charge. These structures may be vertices, edges,
faces (if G is planar), etc. In the discharging phase, we re-assign the charges using the
discharging rules, which describe the structures that will send and/or receive charge. The
discharging must preserve the total charge of the charging phase. The discharging rules
are designed to guarantee that, after this phase, some information on the charges of certain
vertices/edges will help us prove some property of the graph. In many applications, the
initial charges or the discharging rules take into consideration the degree of the vertices.
Here, to prove lower bounds on the minimum density of id codes, we use the discharging
method as in Lemma 2.1, given in the next section.

2. A Lower Bound for the Minimum Density of an Identifying Code of Hk

Lemma 2.1. Let G be a graph (possibly infinite) with bounded degree ∆, a fixed integer.
Let C be an id code of G. To prove that d(C,G) ≥ q for some q, one may use the
discharging method as follows: in the charging phase, assign charge 1 to each vertex
in C and charge 0 to the remaining vertices. Then, one shows discharging rules that
guarantee that, after using them, each vertex v of G has final charge chg(v) at least q.

In [Karpovsky et al. 1998], it was proved that every finite d-regular graph G sat-
isfies d∗(G) ≥ 2/(d + 2). This was done using a double counting argument on the set
of possible identifying codes. In the next theorem we show that the same bound holds
for every graph (possibly infinite) with bounded degree ∆. Our proof is based on the
approach used by [Cranston and Yu 2009] to prove the lower bound 2/5 for d∗(GH).

Theorem 2.1. Let ∆ be a positive integer. If G is an identifiable graph with bounded
degree ∆, then d∗(G) ≥ 2/(∆ + 2); in particular, d∗(Hk) ≥ 2/5 for any k ≥ 2.



Proof. Let C be an id code of G, and let q = 2/(∆+2). We apply the discharging method
with charging rules as stated in Lemma 2.1, and with the following discharging rule:

(R) If v /∈ C and |C[v]| = d, then v receives q/d of charge from each vertex in C[v].

We prove now that chg(v) ≥ q for every vertex v in G. Clearly, if v /∈ C, then
chg(v) = q; so assume that v ∈ C. If v has no neighbor in C, then for all w ∈ N(v) we
have |C[w]| ≥ 2, otherwise C[v] = C[w]. Thus, v sends at most q/2 of charge to each
vertex in N(v). As a vertex in G has degree at most ∆, it follows that charge of v after
discharging is at least 1 − ∆(q/2) = q. Suppose now that v has a neighbor in C. Then
for at most one vertex, say w, that is a neighbor of v outside C, we have that C[w] = {v};
and for all the remaining neighbors x of v outside C, we have that |C[x]| ≥ 2. Thus v
sends at most q of charge to w and at most q/2 to the remaining neighbors x in N(v) \C.
Since the degree of v is at most ∆, it follows that chg(v) ≥ 1 − q − (∆ − 2)(q/2) = q.
As chg(v) ≥ q for every vertex v in G, by Lemma 2.1 we have that d(C,G) ≥ q.

In what follows, we prove that many id codes C of Hk satisfies d(C,Hk) ≥ 3/7.
Theorem 2.2. Let C be an id code of Hk (k ≥ 2) such that every vertex in C has a
neighbor in C. Then d(C,Hk) ≥ 3/7.

Proof. We apply the discharging method with charging rules as stated in Lemma 2.1,
taking q = 3/7, and considering the following discharging rules:

(R1) If v /∈ C and |C[v]| = d, then v receives 3/(7d) of charge from each vertex in C[v].

(R2) If c ∈ C and |N(c) ∩ C| ≥ 2, c sends charge 1/14 for each neighbor in N(c) ∩ C.

We prove that chg(v) ≥ 3/7 for every vertex v, and conclude the proof using
Lemma 2.1. Clearly, chg(v) = 3/7 if v /∈ C. Consider now a vertex c ∈ C. By
hypothesis, we have that c has at least one neighbor in C. If c has exactly one neighbor c′

in C, then c′ must have other neighbor in C. Thus, c sends at most 3/7 of charge to some
neighbor w /∈ C and at most 3/14 to the remaining neighbor x in N(c) \ C, and receives
1/14 from c′. Hence, chg(c) ≥ 1 − 3/7 − 3/14 + 1/14 = 3/7. If c has exactly two
neighbors in C, then c sends at most 3/7 of charge to some neighbor w /∈ C and at most
1/14 to each one of the two neighbors in C. Thus, chg(c) ≥ 1 − 3/7 − 2(1/14) = 3/7.
If c has exactly three neighbors in C, then c sends at most 1/14 of charge to each of them.
Hence, chg(c) ≥ 1− 3(1/14) = 11/14 > 3/7, and this concludes our proof.

3. Minimum Density of an identifying code of H2

The tile, say T , depicted in Figure 1, from column 1 to 20, generates a periodic tiling of
H2. Let C2 be the 18 black vertices in T . We leave to the reader verify that C2 is indeed
an id code of T with density 9/20. Thus, d∗(H2) ≤ 9/20.
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Figure 1. Pattern of an identifying code for H2, whose density is 9/20.

To show that d∗(H2) ≥ 9/20, we use the discharging method, but this time, we
work with special 4-vertex sets. For an integer x, we say that a vertex of column x of



H2 is cubic if it has degree 3 in H2. Wlog, we consider that when x is odd then the
vertices in columns x and −x are cubic. For x odd, let Qx be the quartet of vertices
{(x, 1), (x + 1, 1), (x, 2), (x + 1, 2)}, see Figure 2. Note that H2[Qx] is a P4. Moreover,
the vertices of H2 can be partitioned into quartets Qx. Given a quartet Qx, we also refer
to Qx−2 (resp. Qx+2), its left (resp. right) quartet, as QL

x (resp. QR
x ). We say that Qx is

type i (resp. type i+) if |Qx ∩ C| = i (resp. |Qx ∩ C| ≥ i). A quartet Qx is satisfied if
the sum of their charges is at least 9/5, otherwise it is unsatisfied. (If Qx is satisfied, its
charge can be distributed to its vertices, so that each vertex gets charge 9/20).
Theorem 3.1. The minimum density of any identifying code of H2 is at least 9/20.

[Sketch] Take an id code C of H2 and use the discharging method as stated in Lemma 2.1.
Use the following discharging rules, and show that, after using them, each quartet Qx is
satisfied, and therefore, d(C,H2) ≥ 9/20.

(R1) If Qx is type 0 and unsatisfied, then QL
x (resp. QR

x ) sends 7/5 (resp. 2/5) to Qx.
(R2) If Qx is type 1 and unsatisfied, let y be the unique vertex in Qx ∩ C. If y is cubic,

then QL
x (resp. QR

x ) sends 1/5 (resp. 3/5) to Qx; otherwise, QL
x (resp. QR

x ) sends
3/5 (resp. 1/5) to Qx.
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(a) An example where Rule (R1) is applied.
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(b) An example where Rule (R2) is applied.

Figure 2
4. Conclusion
It would be interesting to obtain, if possible, a better lower bound for d∗(Hk), k ≥ 3, and
results on the upper bound.
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