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Abstract. A graph is locally irregular if any pair of adjacent vertices have dis-
tinct degrees. A locally irregular decomposition of a graph G is a decomposition
of G into subgraphs that are locally irregular. We prove that any graph G can
be decomposed into at most 2∆(G) − 1 locally irregular graphs, improving on
the previous upper bound of 3∆(G)−2. We also show some results on subcubic
and non-decomposable graphs.

1. Introduction
In this paper, we consider only connected and simple graphs. A graph is locally irregular
if no pair of adjacent vertices have the same degree. A k-locally irregular decomposition
(k-liec) of a graph G is a decomposition of G into at most k locally irregular subgraphs.
Note that one can see a k-liec as an edge coloring c : E(G) → {1, 2, . . . , k} in which
the subgraphs induced by each color are locally irregular. The smallest k for which G
admits a k-liec is its irregular chromatic index, denoted by χ′

irr(G). Figure 1 shows two
examples of locally irregular decompositions.

Figure 1. On the left, a 2-liec of the Petersen graph. On the right, a 4-liec of the
bow-tie graph.

We observe that not all graphs admit a locally irregular decomposition, such as
odd paths and odd cycles. We call graphs that admit such decompositions decomposable.
Baudon, Bensmail, Przybyło, and Woźniak [Baudon et al. 2015] introduced the problem
of determining χ′

irr(G) and characterized all non-decomposable graphs, which we present
later. They also posed the following conjecture, which is related to the well-known 1-2-3
Conjecture [Karoński et al. 2004].
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Conjecture 1 ([Baudon et al. 2015]). If G is a decomposable graph, then χ′
irr(G) ≤ 3.

For information about the relation between the conjectures we refer the reader
to [Baudon et al. 2019]. Conjecture 1 holds for all graphs with at most 9 vertices,
cycles, complete graphs, complete bipartite graphs, trees, d-regular graphs with d ≥
107 [Baudon et al. 2015], bipartite cacti graphs [Bensmail 2020], cacti graphs with dis-
joint cycles [Lei et al. 2022], split graphs [Lintzmayer et al. 2021], and any graph G
with δ(G) ≥ 1010 [Przybyło 2015]. There are also partial results towards confirm-
ing the validity of Conjecture 1. For example, in [Lužar et al. 2018], it was proved
that the irregular chromatic index is at most 7 for bipartite graphs and at most 4
for subcubic graphs, while in [Lei et al. 2022] it was shown that it is at most 4 for
any cactus graph. If G is d-degenerate (e.g., planar graphs are 5-degenerate), then
χ′
irr(G) ≤ 3d + 1 [Bensmail et al. 2020]1. Finally, for general graphs G we have

χ′
irr(G) ≤ 220 [Lužar et al. 2018], and if G is not regular, then we know that χ′

irr(G) ≤
3∆(G)− 2 [Bensmail et al. 2020].

Sedlar and Škrekovski [Sedlar and Škrekovski 2021] noticed that the conjecture
does not hold for a very small graph, the bow-tie graph, which has 10 vertices (see Fig-
ure 1). However, this is the only known counterexample. Therefore, one may ask if the
bow-tie is the only counterexample for Conjecture 1. If the answer to that is negative,
then the following questions remain:

(i) what is the minimum k such that χ′
irr(G) ≤ k for any decomposable graph G that

is not the bow-tie graph?
(ii) what are the graphs G for which χ′

irr(G) ≤ 3?

When trying to prove something on this problem by recursion, it is often the case
one has to deal with subgraphs of a decomposable graph that are not decomposable. In
Section 2, we discuss some useful structural results for dealing with such subgraphs and
a result on subcubic decomposable graphs. In Section 3, we prove that in the case of
general graphs G, we have χ′

irr(G) ≤ 2∆(G)− 1, which improves on the previous upper
bound of 3∆(G)− 2.

2. Non-decomposable graphs

In this section, we provide structural results on non-decomposable subcubic graphs. We
start by describing the family T of non-decomposable graphs recursively as follows:

- K3 ∈ T ;
- Let G ∈ T be a graph that contains a triangle with a vertex v of degree 2. Let H

be an odd-length path with an endpoint identified with a vertex of a triangle, or
let H be an even path. The graph obtained by identifying v with a vertex of H of
degree 1 is also in T .

See Figure 2 for examples.

Figure 2. Examples of graphs in the family T of non-decomposable graphs.

1For planar graphs G, they proved that χ′
irr(G) ≤ 15.



Baudon, Bensmail, Przybyło, and Woźniak [Baudon et al. 2015] showed that a
graph G is not decomposable if and only if G is in T , or G is an odd-length cycle or
an odd-length path. Note that all graphs that are not decomposable are subcubic. Also,
graphs G in T have circumference 3 and every v ∈ V (G) of degree 3 is contained in
exactly one triangle.

The two following results guarantee the existence of 3-liecs in some graphs ob-
tained by removing one edge of some graphs that are not decomposable. In what follows,
we write Pn for a path with n vertices and we say Pn is an even path (odd path) if it con-
tains an even (odd) number of edges. Furthermore, given a graph G and v ∈ V (G), we
denote the neighborhood of v in G by NG(v) and the degree of v by dG(v) := |NG(v)|.

Lemma 2. Let G be a non-decomposable graph and let abc be a triangle of G such that
dG(a) = 2. There exists a 3-liec of G− ab in which each color induces a forest of P3.

Proof. Since G contains a triangle, we know that G ∈ T . The proof follows by induction
on the number k of operations made to generate G by using the recursive definition of the
family T . If k = 0, then G is a triangle and G− ab is a P3, so the result clearly holds.

Now let G be built from identifying a degree-2 vertex v of H ∈ T with a degree-
1 vertex z of a graph J which either is an odd path with an endpoint identified with a
triangle or is an even path. Note that J is a 2-locally irregular decomposable graph, from
where we conclude that the subgraph of J induced by each color is a forest of P3. Also
note that v is contained in a triangle of H .

If the triangle abc is contained in H , then, by induction, we know that H − ab
admits a 3-liec where each color induces a forest of P3. Clearly, v ∈ V (H − ab) “sees”
at most two colors, which means we can color J with two colors, using in vz a color that
is not seen by v. This yields the desired 3-liec of G.

If abc is not in H , then J must be an odd path with the triangle abc in one endpoint.
Now let H ′ = H − vy, where y is a vertex that belongs to the same triangle as v. By
induction, H ′ admits a 3-liec using only P3. This means that there is one color not seen
by v and y, which we can use to color vy and zz′, where z′ is the neighbor of z in J . If
J − ab is just an odd path, then J − ab− zz′ is an even path which admits a 2-liec using
only P3. Otherwise, J − ab is an odd path with the degree-2 vertex of a P3 identified in
one endpoint. In this case, J − ab − zz′ also admits a 2-liec using only P3. This yields
the desired 3-liec of G.

Lemma 3. Let G be a non-decomposable graph. For any a and b such that dG(a) = 1
and b ∈ NG(a), there exists a 3-liec of G− ab in which each color induces a forest of P3.

Given a graph G, a vertex u ∈ V (G), and v /∈ V (G), hanging v in u means
building a new graph G′ with V (G′) = V (G) ∪ {v} and E(G′) = E(G) ∪ {uv}. The
following results describe what happens when we add one edge to a graph that is not
decomposable.

Lemma 4. Let G be a non-decomposable graph, u ∈ V (G), v /∈ V (G), and let G′ be a
graph obtained by hanging v in u. If dG(u) = 2 and u is not in a triangle of G, then G′

admits a 3-liec where u is monochromatic and G′ also admits a 3-liec in which each color
induces a forest of P3.



Lemma 5. Let G be a non-decomposable graph, u ∈ V (G), v /∈ V (G), and let G′ be a
graph obtained by hanging v in u. If u is in a triangle of G or dG(u) = 1, then G′ admits
a 3-liec in which each color induces a forest of P3.

Lemma 6. Let G be a non-decomposable graph, u ∈ V (G), v /∈ V (G), and let G′ be a
graph obtained by hanging v in u. If dG(u) = 3, then G′ admits a 3-liec in which each
color induces a forest of P3.

Putting Lemmas 4, 5, and 6 together, we obtain the following corollary.

Corollary 7. Let G be a non-decomposable graph, u ∈ V (G), v /∈ V (G), and let G′ be
a graph obtained by hanging v in u. Then χ′

irr(G
′) ≤ 3. Furthermore, G′ admits a 3-liec

in which each color induces a forest of P3.

Lemma 8. Let G be a non-decomposable graph, u, v ∈ V (G) with uv /∈ E(G), and let
G′ = G+ uv. Then G′ admits a 4-liec in which each color induces a forest of P3 and one
of the four colors appears only at u.

Proof. Let z /∈ V (G) and let G′′ be obtained from G by hanging z in u. Consider a 3-liec
c of G′′ according to Corollary 7. Let w ∈ NG′′(u) be such that c(uw) = c(uz). In G′,
give a fourth color (not used by c) to the edges uw and uv. Then, for the rest of the edges
give the same color as in G′′. This yields a 4-liec of G′ with the desired properties.

3. General upper bound for the irregular chromatic index

In this section, we prove the following result that gives an upper bound on χ′
irr(G) for any

decomposable graph G based on ∆(G) and improves on the previous best-known result.

Theorem 9. If G is a decomposable graph, then χ′
irr(G) ≤ 2∆(G)− 1.

Outline of the proof. The proof follows by induction on the number of edges of G.
If |E(G)| = 2, then G is a P3 and clearly χ′

irr(G) = 1 ≤ 2 · 2− 1 = 3.

Assume |E(G)| ≥ 3. If G is an even cycle or path, then χ′
irr(G) ≤ 3 ≤

2 · 2 − 1 = 3. If G is subcubic with ∆(G) = 3, then we know that χ′
irr(G) ≤

4 ≤ 2 · 3 − 1 = 5 [Lužar et al. 2018]. Therefore, ∆(G) ≥ 4. Let v ∈ V (G) with
dG(v) = ∆(G). Let H = G − v and let H1, . . . , Ht be the connected components of H .
Consider that H1, . . . , Hk are the components that induce non-decomposable graphs and
let Hk+1, . . . , Ht be the decomposable ones.

For each non-decomposable component Hj , with 1 ≤ j ≤ k, let H ′
j = Hj + vuj ,

where uj ∈ V (Hj)∩NG(v). By Corollary 7, H ′
j admits a 3-liec where each color induces

a forest of P3. Each decomposable component Hj , with k < j ≤ t, admits a locally
irregular decomposition with at most 2∆(Hj)− 1 ≤ 2∆(G)− 1 colors by induction.

Now there are ∆(G)− k edges incident to v which are not colored. We show that,
if ∆(G) − k is even, then we form (∆(G) − k)/2 pairs of such edges, and if ∆(G) − k
is odd, then we form one triplet and (∆ − k − 3)/2 pairs, such that each group can be
colored without using new colors.

The rest of the proof follows by analyzing some cases according to the value
of k.
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and Woźniak, M. (2019). A general decomposition theory for the 1-2-3 Conjecture
and locally irregular decompositions. Discrete Mathematics & Theoretical Computer
Science, vol. 21 no. 1, ICGT 2018.

Baudon, O., Bensmail, J., Przybyło, J., and Woźniak, M. (2015). On decomposing regular
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