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Abstract. We investigate the total coloring of fullerene nanodiscs, a subclass of
cubic planar graphs with girth 5 arising in Chemistry, motivated by a conjecture
about the nonexistence of a Type 2 cubic graph of girth at least 5. We prove an
auxiliary lemma which says that every central layer of a fullerene nanodisc is
4-total colorable, a necessary condition for the nanodisc to be Type 1, and we
contribute by giving 4-total colorings for small fullerene nanodiscs, showing
that these graphs are Type 1.

1. The large girth Type 1 conjecture
A total coloring of a graph G is a color assignment of set E ∪ V , where E denotes the
set of edges and V denotes the set of vertices of the graph, such that adjacent or incident
elements have different colors. A k-total coloring of a graph G is a total coloring that
uses a set of k colors, and the graph is k-total colorable if it admits a k-total coloring. The
total chromatic number χ′′(G) is the smallest natural k for which G is k-total colorable.
Behzad and Vizing [Behzad 1965, Vizing 1964] independently conjectured the Total
Coloring Conjecture (TCC) that for any simple graph G, we have χ′′(G) ≤ ∆(G) + 2. If
χ′′(G) = ∆(G) + 1, then the graph is Type 1; if χ′′(G) = ∆(G) + 2, then the graph is
Type 2. The TCC has already been settled for cubic graphs [Vijayaditya 1971]. A well-
known total coloring result in the literature that establishes the total chromatic number of
cycle graphs Cn and that is essential for our results is given by Yap [Yap 1996], and the
algorithm that proves this result can be found in Campos’ doctoral thesis [Campos 2006].

Theorem 1 ([Yap 1996]). Let G be the cycle graph Cn. Then χ′′(G) = 3, if n ≡ 0
mod 3; and 4, otherwise.

Every known Type 2 cubic graph has triangles or squares. So, it is natural to think
that there are no Type 2 cubic graphs with girth at least 5. Thus the following conjecture
was proposed:

Conjecture 1 ( [Brinkmann et al. 2015]). There is no Type 2 cubic graph with girth at
least 5.

Motivated by this conjecture, we investigate the total coloring problem consid-
ering cubic planar graphs with large girth that model chemical structures: the fullerene
nanodiscs.



2. The fullerene nanodiscs
Fullerene nanodiscs Dr, r ≥ 2, are mathematical models of carbon-based molecules
experimentally found in the early eighties, which are cubic, 3-connected, planar graphs
with pentagonal and hexagonal faces. The planar embedding of Dr has its faces arranged
into layers, one layer next to the nearest previous layer starting from a hexagonal layer
until we reach the other hexagonal layer. The distance between the inner (outer) layer and
the central layer, where lie 12 pentagonal faces, is given by the radius parameter r ≥ 2.
Figure 2 shows nanodiscs, where we highlighted with blue color in the central layer the
12 pentagonal faces.

The sequence {1, 6, 12, 18, . . . , 6(r − 1), 6r, 6(r − 1), . . . , 18, 12, 6, 1} provides
the amount of faces on each layer of the nanodisc graph Dr. The 12 pen-
tagonal faces are distributed in the central layer among its 6r faces with the
other (6r − 12) hexagonal faces [Nicodemos 2017]. The auxiliary cycle sequence
{C6, C18, . . . , C12r−6, C12r−6, . . . , C18, C6} provides the sizes of the auxiliary cycles that
define the layers. A nanodisc Dr contains 12r2 vertices, 18r2 edges and has girth 5.

3. The central layers of fullerene nanodiscs
The first total coloring result in the class of fullerene nanodiscs was established by da
Cruz et al. in [da Cruz et al. 2021b], showing that the fullerene nanodisc D2 is Type 1.
Note that the number of vertices of every auxiliary cycle of a nanodisc is divisible by
3, and that the radial edges define a perfect matching in Dr, r ≥ 2. Based on the total
coloring algorithm for the cycle graphs provided by the constructive proof of Theorem 1,
we are able to prove the following auxiliary lemma that colors the central layer.
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Figure 1. (a) Choice of u0 and v0 in C12r−6 and C∗
12r−6, respectively; (b) Case 1.1;

(c) Case 1.2; (d) Case 2.

Theorem 2. The central layer of every fullerene nanodisc Dr, r ≥ 2, is 4-total colorable.

Proof. Let Dr be a nanodisc, r ≥ 2, and the C12r−6 cycles that comprise its central layer.
By Theorem 1, there is a 3-total coloring for each C12r−6 and an algorithm that provides
such coloring [Campos 2006, Yap 1996]. We shall define the cycles and label the vertices
of each cycle as follows.

V (C12r−6) = {u0, u1, . . . , u12r−7}, V (C∗
12r−6) = {v0, v1, . . . , v12r−7}.



Choose u0 and v0 such that these vertices are extremes of a pentagonal face, so
that the edge u0v0 is the second radial edge of this pentagon in a clockwise direction, as
illustrated in Figure 1(a). We choose the 3-total coloring for C12r−6 by choosing color c1
for u0 and for C∗

12r−6 by choosing color c3 for v0. Thus, the color assignment in C12r−6 is
such that

c(uk) =


c1, if k ≡ 0 mod 3;

c3, if k ≡ 1 mod 3;

c2, if k ≡ 2 mod 3;

c(ukuk+1) = c(uk+1) mod 3, ∀ukuk+1 ∈ E(C12r−6),

and for C∗
12r−6 is such that

c(vk) =


c3, if k ≡ 0 mod 3;

c2, if k ≡ 1 mod 3;

c1, if k ≡ 2 mod 3;

c(vkvk+1) = c(vk+1) mod 3, ∀vkvk+1 ∈ E(C∗
12r−6).

From the structural results for central layer of Dr obtained in [da Cruz 2022,
da Cruz et al. 2021b], it is easy to see that for r > 2, there are at most two consecutive
pentagons, with balanced hexagons among the groups of pentagons, and the two nearest
pentagons are partitioned differently. First, we will check that the radial edges among
C12r−6 and C∗

12r−6 are of form ukvk or ukvk+1. To verify this, we must consider two cases
of face structure:

• Case 1: There are balanced hexagons besides the two nearest pentagons.
– Case 1.1: The first pentagon has 3 vertices in C12r−6. (See Figure 1(b).)

By choice of u0 and v0 and by counting vertices, every second radial edge
of this pentagon in a clockwise direction is of form ukvk, and thus the first
radial edge in a clockwise direction is of form ukvk+1, and every hexagon
consecutive to this face will inherit this property. Thus, the hexagonal
radial edges are of form ukvk. It remains to check the radial edges of the
next pentagon. As this pentagon is next in the order to a balanced hexagon,
the first radial edge in a clockwise direction is of form ukvk. Clearly, the
other radial edge is of form ukvk+1.

– Case 1.2: The first pentagon has 2 vertices in C12r−6. (See Figure 1(c).)
As the second radial edge in a clockwise direction is of form ukvk+1, ev-
ery hexagon consecutive to this face will inherit this property. Thus, the
hexagonal radial edges are of form ukvk+1. It remains to check the ra-
dial edges of the next pentagon. As this pentagon is next in the order to a
balanced hexagon, the first radial edge in a clockwise direction is of form
ukvk+1. Clearly, by the structure of these pentagons, the other radial edge
is of form ukvk.

• Case 2: Two consecutive pentagons. (See Figure 1(d).) As the pentagonal struc-
ture is preserved, the pentagonal radial edges are of form ukvk and ukvk+1.



It remains to check whether these edges cause color conflict. By the coloring
structure, vertices uk ∈ V (C12r−6) and vk ∈ V (C∗

12r−6) are colored with different
classes of colors. Thus, c(uk) ̸= c(vk) and the edges of form ukvk are not in color
conflict. Also, by the coloring structure, the colors c1, c2, c3 . . . , c1, c2, c3 are associ-
ated in this order with the elements u0, u0u1, u1, . . . , u12r−8u12r−7, u12r−8, u12r−7u0, u0

and the colors c3, c1, c2, . . . , c3, c1, c2 are assigned in this order to the elements
v0, v0v1, v1, . . . , v12r−8v12r−7, v12r−8, v12r−7v0, v0.

So note by inspection that c(uk) ̸= c(vk+1) and the radial edges of form ukvk+1 are
not in color conflict. As none of these radial edges causes a color conflict, just introduce
a fourth color class, c4, in these edges and thus we obtain a 4-total coloring of the central
layer for Dr, r ≥ 2.

4. Extending the central layer coloring of small fullerene nanodiscs
Based on Lemma 2 and starting from the 4-total coloring obtained for the central layer,
we obtained coloring structures that provide the 4-total coloring of the unique non
isomorphic representation [da Cruz et al. 2021b] of D3 and the two non isomorphic
instances [da Cruz et al. 2021a] of D4, proving that these graphs are Type 1. Hence, we
have the following result for this class of graphs.

Figure 2. 4-total colorings for small fullerene nanodiscs.

Theorem 3. The smallest fullerene nanodiscs are Type 1.

Figure 2 exhibits the 4-total colorings obtained for Dr, 2 ≤ r ≤ 4. The 4-total
coloring obtained for both instances of D4 is the same, as both have the same number of
vertices, and what differs in the representations of this nanodisc is its central layer. Also,
the inner (outer) cycle of D3 and the two D4 have the same coloring structure.

The sketch of the proof of these obtained 4-total colorings have been submitted in
an article to Matemática Contemporânea 2023.

Current work Theorem 2 gives a 4-total coloring for the central layer of every fullerene
nanodisc. We aim to extend Theorem 3 to larger fullerene nanodiscs, proving that Dr,
r ≥ 5, are Type 1, in order to give further evidence to Conjecture 1.
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