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Abstract. In 1988, Chetwynd and Hilton defined conformable vertex colorings
when trying to characterize the vertex colorings induced by a (∆ + 1)-total
coloring. Anticonformable colorings were used to characterize the subcubic
conformable graphs. A graph G is anticonformable if it has a (∆ + 1)-vertex
coloring such that the number of color classes (including empty color classes)
with the same parity as |V | is at most def(G) =

∑
v∈V (∆− dG(v)). The only

connected subcubic not anticonformable graph is the triangular prism graph
L3. In this paper, we prove that if k is even, then every k-regular graph is not
anticonformable; and if k ≥ 3 is odd, then there is a not anticonformable graph
Hk, where H3 = L3.

1. Introduction
A proper k-vertex coloring of G is an assignment of k colors to the vertices of G so
that adjacent vertices have different colors. The colors are denoted by natural numbers
and a class of color i ∈ N by Ci. A proper k-total coloring of G is an assignment of k
colors to the vertices and edges of G so that adjacent or incident elements have different
colors. In this paper, all colorings are proper, and thus we omit the proper term. The total
chromatic number of G, denoted by χ′′(G), is the smallest k for which G has a k-total
coloring. Clearly, χ′′(G) ≥ ∆ + 1. The Total Coloring Conjecture (TCC) states that the
total chromatic number of any graph is at most ∆+2 [Behzad 1965, Vizing 1964]. If the
TCC holds in general, then the graphs can be partitioned into 2 collections: graphs with
χ′′(G) = ∆ + 1, called Type 1, and graphs with χ′′(G) = ∆ + 2, called Type 2.

The deficiency of G is def(G) =
∑

v∈V (∆− d(v)), where d(v) is the degree of
a vertex v in G. A graph G is conformable if G has a (∆+ 1)-vertex coloring φ in which
the number of color classes (including empty color classes) whose parity differs from that
of |V (G)| is at most def(G). In this case, we say that φ is a conformable coloring. If
G is not conformable, then G is said non-conformable. Note that if G is a regular graph,
then def(G) = 0 and φ is called conformable if and only if each color class has the same
parity as |V (G)|. In Figure 1 we depict the 3 possible cases for graphs according to being
Type 1 or Type 2 and their conformable classification. The disjoint union of graphs G and
H is the graph G ∪H with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H), where
V (G) ∩ V (H) = ∅. The disjoint union of λ ≥ 2 copies of a graph G is denoted by λG.

[Chetwynd and Hilton 1988] studied total coloring and observed that every (∆ +
1)-total coloring of a graph induces a special (∆ + 1)-vertex coloring. They defined
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Figure 1. In (1a), the cycle graph C4 which is conformable, but is Type 2. In (1b),
the Petersen graph which is Type 1 and, consequently, conformable. In
(1c), the cycle graph C5 which is non-conformable and, consequently, is
Type 2. Note that vertices with ? cannot be assigned 1, 2, or 3, since these
color classes must be odd.

this as a conformable coloring. Using this definition, they introduced the conformable
graph class, consisting of graphs that admit conformable colorings. Therefore, Type 1
graphs are contained within the conformable graph class. Several studies involving the
CONFORMABLE VERTEX COLORING problem have been considered.

CONFORMABLE VERTEX COLORING
Instance: A graph G = (V,E).
Question: Is there a (∆ + 1)-vertex coloring φ in which the number of color

classes (including empty color classes) with different parity of |V |
is at most def(G) (i.e., is G conformable)?

[Hamilton et al. 1999] gave necessary conditions for a graph to be non-confor-
mable. [Hilton and Hind 2002] proved that for non-conformable graphs ∆−2 is an upper
bound for the deficiency of G. [Campos and de Mello 2007] posed a conjecture with a
characterization of Type 1 power of cycle graphs. [Nigro et al. 2021] proved that there are
infinite families of circulant graphs Type 1 and proved that there is a Type 2 circulant graph
that is conformable. [Zorzi et al. 2022] proved that the characterization of Campos and
de Mello holds to the conformable power of cycle graphs. [Nigro et al. 2022b] classified
the connected conformable subcubic graphs. A graph G is said subcubic if ∆(G) =
3. Recently, [Nigro et al. 2022a] introduced the concept of anticonformable coloring in
order to establish the general classification of conformable subcubic graphs.
Theorem 1 ([Nigro et al. 2022a]). Let G be a subcubic graph. Then G is non-conformable
and not Type 1 if and only if

1. G = λK4, where λ is an odd positive integer.
2. G = λK4 ∪K3,3, where λ is an even positive integer.
3. G = λK4 ∪ L3, where λ is an odd positive integer.

Notice that there are graphs that are not Type 1 and conformable (Figure 1a). In
this paper, we use anticonformable coloring as a tool in the process of classifying con-
formable graphs. We prove that if k is even, then every k-regular graph is not anticon-
formable; and that if k is odd, then there is a not anticonformable graph Hk. We prove
that λK2q+2 ∪H2q+1 is non-conformable, where λ is an odd positive integer and q ≥ 1.



2. Main result

A graph G is anticonformable if it has a (∆(G) + 1)-vertex coloring φ in which the
number of color classes (including empty color classes) with the same parity as |V (G)|
is at most def(G). In this case, we say that φ is an anticonformable coloring. Note that
if G is a regular graph, then φ is called anticonformable if the parity of each color class
differs from that of |V (G)|. Figures 2a and 2b present examples of subcubic graphs with
the corresponding anticonformable classification. Figure 2c presents the cycle graph C5,
which is not anticonformable.

(a)
(b) (c)

Figure 2. In (2a), the triangular prism graph L3 is not anticonformable. Note that
vertices with ? cannot be assigned 1, 2, or 3, since these color classes must
be odd. In (2b), the Möbius Ladder M8 with 8 vertices is anticonformable.
In (2c), the cycle graph C5 is not anticonformable. Note that the vertex with
? cannot be assigned 1, 2, or 3, since these color classes must be even.

Theorem 2. If G is k-regular with k even, then G is not anticonformable.

Proof. Let G be a k-regular graph with k even. Suppose by contradiction that there is
an anticonformable coloring φ to G. Let C1, C2, . . . , Ck+1 be the color classes of φ. By
definition of anticonformable and since def(G) = 0, the parity of each color class differs
from that of |V (G)|. We consider the two cases,

1. Suppose that |V (G)| is even. Since |Ci| is odd for 1 ≤ i ≤ k + 1, then |V (G)| =
|C1|+ |C2|+ · · ·+ |Ck+1| is odd, resulting in a contradiction.

2. Suppose that |V (G)| is odd. Since |Ci| is even, for 1 ≤ i ≤ k + 1, then |V (G)| =
|C1|+ |C2|+ · · ·+ |Ck+1| is even, resulting in a contradiction as well.

Therefore, G is not anticonformable.

Let q be a positive integer. The k-regular graph Hk, for k = 2q + 1 is defined as
V (Hk) = U ∪ V , where U = {u0, u1, . . . , uq+1} and V = {v0, v1, . . . , vq+1} are cliques
of Hk and E(Hk) = {uiuj, vivj | i ̸= j and i, j ∈ {0, . . . , q + 1}} ∪ {uivi, uivi+1, . . . ,
uivi+(q−1) | i ∈ {0, . . . , q + 1}}, where the index p of vp is taken p mod (q + 2). Note
that |V (Hk)| = 2q + 4. The graph H3 is isomorphic to the triangular prism graph. In
Figure 3 we present a drawing for H5 and H7.
Theorem 3. Let q be a positive integer with k = 2q + 1. Then the k-regular graph Hk is
not anticonformable.



Proof. Suppose, by contradiction, that Hk is anticonformable. Let φ be an anticon-
formable coloring of Hk. Let C1, C2, . . . , C2q+2 be the color classes of φ. From the defini-
tion of anticonformable coloring, as def(Hk) = 0 and |V (Hk)| is even, each color class
Ci is odd. Hence, every color class is non-empty. Since U and V form a partition into
cliques for V (Hk), each color class Ci is singleton. Hence, |C1| + |C2| + · · · + |C2q+2| =
2q + 2 ̸= 2q + 4 = |V (Hk)|, a contradiction. Therefore, Hk is not anticonformable.

Corollary 1. Let λ and q be positive integers with k = 2q+1. If λ is odd, then the graph
λK2q+2 ∪Hk is non-conformable.

Proof. We remark that ∆(K2q+2) = ∆(Hk) = 2q + 1. Since in any (2q + 2)-vertex
coloring to K2q+2 has each color class singleton, λK2q+2 has each color class with size
λ. If λ is odd, then λK2q+2 is non-conformable. From Theorem 3, Hk has no anticon-
formable coloring, i.e., any (2q + 2)-vertex coloring of Hk has at least one even color
class. Hence, any (2q + 2)-vertex coloring to λK2q+2 ∪ Hk has at least one odd color
class. Since |V (λK2q+2 ∪ Hk)| is even and def(λK2q+2 ∪ Hk) = 0, λK2q+2 ∪ Hk is
non-conformable.

Corollary 2. Let λ and q be positive integers with k = 2q+1. If λ is odd, then the graph
λK2q+2 ∪Hk is not Type 1 and non-conformable.

(a) (b)

Figure 3. In (3a), the graph H5 = H2·2+1, where V (H5) = {u0, u1, u2, u3} ∪
{v0, v1, v2, v3} and |V (H5)| = 2 · 2 + 4. In (3b), the graph H7 = H2·3+1, where
V (H7) = {u0, u1, u2, u3, u4} ∪ {v0, v1, v2, v3, v4} and |V (H7)| = 2 · 3 + 4.

Futher work
In this work, we present the classification of anticonformable k-regular graphs with k even
and we prove that there is a not anticonformable k-regular graph with k odd. Finally, we
show an application of the anticonformable definition in order to determine a family of
not Type 1 graphs that are non-conformable. As a future work, we aim to characterize,
for each integer k ≥ 4, the family of graphs with maximum degree ∆ = k that are not
anticonformable. Finally, we intend to use this result in order to establish the classification
of not Type 1 graphs with maximum degree ∆ = k that are non-conformable.
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In Anais do LIV Simpósio Brasileiro de Pesquisa Operacional. Galoá.
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