On the conformable colorings of k-regular graphs*

Luerbio Faria ${ }^{1}$, Mauro Nigro ${ }^{1}$, Diana Sasaki ${ }^{1}$
${ }^{1}$ Universidade do Estado do Rio de Janeiro (UERJ)
Rio de Janeiro - RJ - Brazil
\{luerbio, diana.sasaki\}@ime.uerj.br, mauro.nigro@pos.ime.uerj.br

Abstract

In 1988, Chetwynd and Hilton defined conformable vertex colorings when trying to characterize the vertex colorings induced by a $(\Delta+1)$-total coloring. Anticonformable colorings were used to characterize the subcubic conformable graphs. A graph G is anticonformable if it has a $(\Delta+1)$-vertex coloring such that the number of color classes (including empty color classes) with the same parity as $|V|$ is at most $\operatorname{def}(G)=\sum_{v \in V}\left(\Delta-d_{G}(v)\right)$. The only connected subcubic not anticonformable graph is the triangular prism graph L_{3}. In this paper, we prove that if k is even, then every k-regular graph is not anticonformable; and if $k \geq 3$ is odd, then there is a not anticonformable graph H_{k}, where $H_{3}=L_{3}$.

1. Introduction

A proper k-vertex coloring of G is an assignment of k colors to the vertices of G so that adjacent vertices have different colors. The colors are denoted by natural numbers and a class of color $i \in \mathbb{N}$ by \mathcal{C}_{i}. A proper k-total coloring of G is an assignment of k colors to the vertices and edges of G so that adjacent or incident elements have different colors. In this paper, all colorings are proper, and thus we omit the proper term. The total chromatic number of G, denoted by $\chi^{\prime \prime}(G)$, is the smallest k for which G has a k-total coloring. Clearly, $\chi^{\prime \prime}(G) \geq \Delta+1$. The Total Coloring Conjecture (TCC) states that the total chromatic number of any graph is at most $\Delta+2$ [Behzad 1965, Vizing 1964]. If the TCC holds in general, then the graphs can be partitioned into 2 collections: graphs with $\chi^{\prime \prime}(G)=\Delta+1$, called Type 1, and graphs with $\chi^{\prime \prime}(G)=\Delta+2$, called Type 2.

The deficiency of G is $\operatorname{def}(G)=\sum_{v \in V}(\Delta-d(v))$, where $d(v)$ is the degree of a vertex v in G. A graph G is conformable if G has a $(\Delta+1)$-vertex coloring φ in which the number of color classes (including empty color classes) whose parity differs from that of $|V(G)|$ is at most $\operatorname{de} f(G)$. In this case, we say that φ is a conformable coloring. If G is not conformable, then G is said non-conformable. Note that if G is a regular graph, then $\operatorname{def}(G)=0$ and φ is called conformable if and only if each color class has the same parity as $|V(G)|$. In Figure 1 we depict the 3 possible cases for graphs according to being Type 1 or Type 2 and their conformable classification. The disjoint union of graphs G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$, where $V(G) \cap V(H)=\emptyset$. The disjoint union of $\lambda \geq 2$ copies of a graph G is denoted by λG.
[Chetwynd and Hilton 1988] studied total coloring and observed that every $(\Delta+$ 1)-total coloring of a graph induces a special $(\Delta+1)$-vertex coloring. They defined

[^0]

Figure 1. In (1a), the cycle graph C_{4} which is conformable, but is Type 2. In (1b), the Petersen graph which is Type 1 and, consequently, conformable. In (1c), the cycle graph C_{5} which is non-conformable and, consequently, is Type 2. Note that vertices with ? cannot be assigned 1,2 , or 3 , since these color classes must be odd.
this as a conformable coloring. Using this definition, they introduced the conformable graph class, consisting of graphs that admit conformable colorings. Therefore, Type 1 graphs are contained within the conformable graph class. Several studies involving the CONFORMABLE VERTEX COLORING problem have been considered.

CONFORMABLE VERTEX COLORING

Instance: A graph $G=(V, E)$.
Question: Is there a ($\Delta+1$)-vertex coloring φ in which the number of color classes (including empty color classes) with different parity of $|V|$ is at most $\operatorname{def}(G)$ (i.e., is G conformable)?
[Hamilton et al. 1999] gave necessary conditions for a graph to be non-conformable. [Hilton and Hind 2002] proved that for non-conformable graphs $\Delta-2$ is an upper bound for the deficiency of G. [Campos and de Mello 2007] posed a conjecture with a characterization of Type 1 power of cycle graphs. [Nigro et al. 2021] proved that there are infinite families of circulant graphs Type 1 and proved that there is a Type 2 circulant graph that is conformable. [Zorzi et al. 2022] proved that the characterization of Campos and de Mello holds to the conformable power of cycle graphs. [Nigro et al. 2022b] classified the connected conformable subcubic graphs. A graph G is said subcubic if $\Delta(G)=$ 3. Recently, [Nigro et al. 2022a] introduced the concept of anticonformable coloring in order to establish the general classification of conformable subcubic graphs.
Theorem 1 ([Nigro et al. 2022a]). Let G be a subcubic graph. Then G is non-conformable and not Type 1 if and only if

1. $G=\lambda K_{4}$, where λ is an odd positive integer.
2. $G=\lambda K_{4} \cup K_{3,3}$, where λ is an even positive integer.
3. $G=\lambda K_{4} \cup L_{3}$, where λ is an odd positive integer.

Notice that there are graphs that are not Type 1 and conformable (Figure 1a). In this paper, we use anticonformable coloring as a tool in the process of classifying conformable graphs. We prove that if k is even, then every k-regular graph is not anticonformable; and that if k is odd, then there is a not anticonformable graph H_{k}. We prove that $\lambda K_{2 q+2} \cup H_{2 q+1}$ is non-conformable, where λ is an odd positive integer and $q \geq 1$.

2. Main result

A graph G is anticonformable if it has a $(\Delta(G)+1)$-vertex coloring φ in which the number of color classes (including empty color classes) with the same parity as $|V(G)|$ is at most $\operatorname{def}(G)$. In this case, we say that φ is an anticonformable coloring. Note that if G is a regular graph, then φ is called anticonformable if the parity of each color class differs from that of $|V(G)|$. Figures 2a and 2 b present examples of subcubic graphs with the corresponding anticonformable classification. Figure 2c presents the cycle graph C_{5}, which is not anticonformable.

Figure 2. $\operatorname{In}(\mathbf{2 a})$, the triangular prism graph L_{3} is not anticonformable. Note that vertices with ? cannot be assigned 1,2 , or 3 , since these color classes must be odd. In (2b), the Möbius Ladder M_{8} with 8 vertices is anticonformable. $\ln (2 \mathrm{c})$, the cycle graph C_{5} is not anticonformable. Note that the vertex with ? cannot be assigned 1,2 , or 3 , since these color classes must be even.

Theorem 2. If G is k-regular with k even, then G is not anticonformable.

Proof. Let G be a k-regular graph with k even. Suppose by contradiction that there is an anticonformable coloring φ to G. Let $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{k+1}$ be the color classes of φ. By definition of anticonformable and since $\operatorname{def}(G)=0$, the parity of each color class differs from that of $|V(G)|$. We consider the two cases,

1. Suppose that $|V(G)|$ is even. Since $\left|\mathcal{C}_{i}\right|$ is odd for $1 \leq i \leq k+1$, then $|V(G)|=$ $\left|\mathcal{C}_{1}\right|+\left|\mathcal{C}_{2}\right|+\cdots+\left|\mathcal{C}_{k+1}\right|$ is odd, resulting in a contradiction.
2. Suppose that $|V(G)|$ is odd. Since $\left|\mathcal{C}_{i}\right|$ is even, for $1 \leq i \leq k+1$, then $|V(G)|=$ $\left|\mathcal{C}_{1}\right|+\left|\mathcal{C}_{2}\right|+\cdots+\left|\mathcal{C}_{k+1}\right|$ is even, resulting in a contradiction as well.

Therefore, G is not anticonformable.

Let q be a positive integer. The k-regular graph H_{k}, for $k=2 q+1$ is defined as $V\left(H_{k}\right)=U \cup V$, where $U=\left\{u_{0}, u_{1}, \ldots, u_{q+1}\right\}$ and $V=\left\{v_{0}, v_{1}, \ldots, v_{q+1}\right\}$ are cliques of H_{k} and $E\left(H_{k}\right)=\left\{u_{i} u_{j}, v_{i} v_{j} \mid i \neq j\right.$ and $\left.i, j \in\{0, \ldots, q+1\}\right\} \cup\left\{u_{i} v_{i}, u_{i} v_{i+1}, \ldots\right.$, $\left.u_{i} v_{i+(q-1)} \mid i \in\{0, \ldots, q+1\}\right\}$, where the index p of v_{p} is taken $p \bmod (q+2)$. Note that $\left|V\left(H_{k}\right)\right|=2 q+4$. The graph H_{3} is isomorphic to the triangular prism graph. In Figure 3 we present a drawing for H_{5} and H_{7}.
Theorem 3. Let q be a positive integer with $k=2 q+1$. Then the k-regular graph H_{k} is not anticonformable.

Proof. Suppose, by contradiction, that H_{k} is anticonformable. Let φ be an anticonformable coloring of H_{k}. Let $\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{2 q+2}$ be the color classes of φ. From the definition of anticonformable coloring, as $\operatorname{def}\left(H_{k}\right)=0$ and $\left|V\left(H_{k}\right)\right|$ is even, each color class \mathcal{C}_{i} is odd. Hence, every color class is non-empty. Since U and V form a partition into cliques for $V\left(H_{k}\right)$, each color class \mathcal{C}_{i} is singleton. Hence, $\left|\mathcal{C}_{1}\right|+\left|\mathcal{C}_{2}\right|+\cdots+\left|\mathcal{C}_{2 q+2}\right|=$ $2 q+2 \neq 2 q+4=\left|V\left(H_{k}\right)\right|$, a contradiction. Therefore, H_{k} is not anticonformable.

Corollary 1. Let λ and q be positive integers with $k=2 q+1$. If λ is odd, then the graph $\lambda K_{2 q+2} \cup H_{k}$ is non-conformable.

Proof. We remark that $\Delta\left(K_{2 q+2}\right)=\Delta\left(H_{k}\right)=2 q+1$. Since in any $(2 q+2)$-vertex coloring to $K_{2 q+2}$ has each color class singleton, $\lambda K_{2 q+2}$ has each color class with size λ. If λ is odd, then $\lambda K_{2 q+2}$ is non-conformable. From Theorem 3, H_{k} has no anticonformable coloring, i.e., any $(2 q+2)$-vertex coloring of H_{k} has at least one even color class. Hence, any $(2 q+2)$-vertex coloring to $\lambda K_{2 q+2} \cup H_{k}$ has at least one odd color class. Since $\left|V\left(\lambda K_{2 q+2} \cup H_{k}\right)\right|$ is even and $\operatorname{def}\left(\lambda K_{2 q+2} \cup H_{k}\right)=0, \lambda K_{2 q+2} \cup H_{k}$ is non-conformable.

Corollary 2. Let λ and q be positive integers with $k=2 q+1$. If λ is odd, then the graph $\lambda K_{2 q+2} \cup H_{k}$ is not Type 1 and non-conformable.

Figure 3. In (3a), the graph $H_{5}=H_{2 \cdot 2+1}$, where $V\left(H_{5}\right)=\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\} \cup$ $\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$ and $\left|V\left(H_{5}\right)\right|=2 \cdot 2+4$. In (3b), the graph $H_{7}=H_{2 \cdot 3+1}$, where $V\left(H_{7}\right)=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}\right\} \cup\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $\left|V\left(H_{7}\right)\right|=2 \cdot 3+4$.

Futher work

In this work, we present the classification of anticonformable k-regular graphs with k even and we prove that there is a not anticonformable k-regular graph with k odd. Finally, we show an application of the anticonformable definition in order to determine a family of not Type 1 graphs that are non-conformable. As a future work, we aim to characterize, for each integer $k \geq 4$, the family of graphs with maximum degree $\Delta=k$ that are not anticonformable. Finally, we intend to use this result in order to establish the classification of not Type 1 graphs with maximum degree $\Delta=k$ that are non-conformable.

References

Behzad, M. (1965). Graphs and their chromatic numbers. PhD thesis, Michigan State University.

Campos, C. N. and de Mello, C. P. (2007). A result on the total colouring of powers of cycles. Discret. Appl. Math., 155:585-597.

Chetwynd, A. G. and Hilton, A. J. W. (1988). Some refinements of the total chromatic number conjecture. Congr. Numer., pages 195-216.
Hamilton, G. M., Hilton, A. J. W., and Hind, H. R. F. (1999). Totally critical even order graphs. J. Comb. Theory Ser. B., 76(2):262-279.
Hilton, A. J. W. and Hind, H. R. (2002). Non-conformable subgraphs of non-conformable graphs. Discrete Math., 256(1):203-224.

Nigro, M., Adauto, M. N., and Sasaki, D. (2021). On total coloring of 4-regular circulant graphs. Procedia Computer Science, 195:315-324.
Nigro, M., Faria, L., and Sasaki, D. (2022a). A conformabilidade dos grafos subcúbicos. In Anais do LIV Simpósio Brasileiro de Pesquisa Operacional. Galoá.

Nigro, M., Faria, L., and Sasaki, D. (2022b). A conformabilidade dos grafos subcúbicos conexos. In Anais do VII Encontro de Teoria da Computação, pages 49-52.
Vizing, V. (1964). On an estimate of the chromatic class of a p-graph. Metody Diskret. Analiz., 3:25-30.

Zorzi, A., Figueiredo, C., Machado, R., Zatesko, L., and Souza, U. (2022). Compositions, decompositions, and conformability for total coloring on power of cycle graphs. Discret. Appl. Math., 323:349-363.

[^0]: *This work was carried out with the partial support of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Funding Code 001, of CNPq (306218/2022-4, 406036/2021-7, 313797/2020-0) and of FAPERJ (E26/201.360/2021 JCNE, E-26/010.002674/2019 ARC, E-26/200.519/2023 CNE)

