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Abstract. In a graph, an identifying code (or ID code, for short) is a dominating
set with the property that the closed neighborhood of each vertex in the graph
has a distinct intersection with the set. Thus every vertex can be uniquely iden-
tified by this intersection. The ID code number of a graph G is the minimum
cardinality of an ID code of G and is denoted by γID(G). We present lower and
upper bounds for γID in the Cartesian product of star and path graphs.

1. Introduction
We consider finite, simple, and undirected graphs and use standard notation and terminol-
ogy. For a graph G, the vertex and edge set are denoted V (G) and E(G), respectively.
For a vertex u of G, the neighborhood, and the closed neighborhood are denoted NG(u)
and NG[u], respectively. We write N [v] when there is no ambiguity.

Let C ⊆ V (G). We say that C is a dominating set if, for each vertex u ∈ V (G),
C ∩N [u] ̸= ∅. A vertex u of C dominates a vertex v if either u = v, or u is adjacent to v.
Two vertices u, v are separated by C if N [u] ∩ C ̸= N [v] ∩ C; set C is a separating set
if every pair of distinct vertices of V (G) are separated by C. A subset C ⊆ V (G) is an
identifying code (ID code, for short) if C is both a dominating set and a separating set of
G. The members of C are called codewords. Note that a graph has an identifying code if
and only if no two vertices have the same closed neighborhood. The ID code number of
a graph G is the minimum cardinality of an ID code of G and is denoted by γID(G).

ID codes were first introduced by [Karpovsky et al. 1998] to model fault-detection
problems in multi-processor systems. Since then, ID codes have been studied in many
classes of graphs. A detailed list of references on ID codes can be found on Jean’s web-
page [Jean 2023]. It is algorithmically hard [Auger 2010, Charon et al. 2003] to deter-
mine identifying codes of minimum order even for planar graphs of arbitrarily large girth.

For Cartesian products, the problem of finding ID codes has already
been studied in a variety of classes, such as paths [Cohen et al. 1999], cliques
[Goddard and Wash 2013, Gravier et al. 2008], and the Cartesian product of a path and a
clique [Hedetniemi 2016]. Upper and lower bounds for the ID code number of the Carte-
sian product G□K2 were given [Rall and Wash 2017]. In the present paper, we further
study ID codes focusing on the Cartesian products of star and path graphs, also known by
stacked book graphs. We present lower and upper bounds for γID in these graphs.

2. ID code in K1,n□Pm

We use [n] to denote the set {1, . . . , n} and [n]0 = {0} ∪ [n]. Throughout this section,
let K1,n be a star graph of order n+ 1, n ≥ 2, and vertex set V (K1,n) = {v0, v1, . . . , vn}



Figure 1. Graph K1,4 □P4.

such that v0 is its universal vertex, and let Pm : u1u2 . . . um−1um be a path graph of order
m. Since K1,1 and K1,2 are path graphs, we consider m ≥ 3.

The Cartesian product of two graphs G and H , denoted by G□H , is the graph
with vertex set V (G□H) = V (G) × V (H) and edge set E(G□H) satisfying the fol-
lowing condition: (u, u′)(v, v′) ∈ E(G□H) if and only if either u = v and u′v′ ∈ E(H)
or u′ = v′ and uv ∈ E(G). See in Figure 1 a stacked book graph that is the Cartesian
product of the star K1,4 and a 4-path.

Let j, k ∈ [m] and i ∈ [n]0. The K1,n-layer (or Pm-layer) is the subgraph of
K1,n□Pm induced by V (K1,n) × {uj} (or V (Pm) × {vi}) and it is denoted by Kj

1,n.
The two K1,n-layers Kj

1,n and Kk
1,n are adjacent if ujuk ∈ E(Pm), and non-adjacent

otherwise. Let C ⊆ V (K1,n□Pm). We define the function fC : [m] → [n + 1]0 by
fC(j) = |C ∩ V (Kj

1,n)|. For j ∈ [m], the set Bj(C), a subset of [n]0, is defined as:

Bj(C) =

 {i : C ∩ {(vi, u1), (vi, u2)} ≠ ∅} if j = 1,
{i : C ∩ {(vi, uj−1), (vi, uj), (vi, uj+1)} ≠ ∅} if 2 ≤ j ≤ m− 1,
{i : C ∩ {(vi, um−1), (vi, um)} ≠ ∅} if j = m.

We give a necessary condition for C to be an ID Code in K1,n□Pm.

Lemma 1 For n ≥ 2 and m ≥ 3, if C is an ID code in K1,n□Pm, then |Bj(C)| ≥ n, for
all j ∈ [m].

Proof. Suppose that C is an ID code in K1,n□Pm and, for a contradiction, |Bj(C)| < n,
for some j ∈ [m]. So, there exist i, k ∈ [n]0 with i ̸= k such that {i, k} ∩ Bj(C) = ∅.
Suppose i = 0. Thus (vk, uj) is not dominated by C. So we may assume that i ̸= 0. By
symmetry, k ̸= 0. Since C is dominating, N [(vi, uj)]∩C = N [(vk, uj)]∩C = {(v0, uj)},
which contradicts that C is an identifying code. □

Corollary 2 For n ≥ 2 and m ≥ 3, if C is an ID code in K1,n□Pm, then fC(1)+fC(2) ≥
n, fC(m− 1) + fC(m) ≥ n and fC(j − 1) + fC(j) + fC(j + 1) ≥ n for 2 ≤ j ≤ m− 1.

The next result is a sufficient condition for a dominating set C to be a separating
set in K1,n□Pm.

Proposition 3 If C ⊆ V (K1,n□Pm) is a dominating set satisfying the following condi-
tions, then C is an ID code of K1,n□Pm.

1. |Bj(C)| ≥ n, for all j ∈ [m];
2. {(v0, u1), (v0, um)} ⊆ C and {(v0, uj−1), (v0, uj+1)} ∩ C ̸= ∅, for all j ∈

{2, . . . ,m− 1};
3. If 3 ≤ j ≤ m − 3 and (V (Kj

1,n) ∪ V (Kj+1
1,n )) ∩ C = {(v0, uj), (v0, uj+1)}, then

{(v0, uj−1), (v0, uj+2)} ∩ C ̸= ∅;



4. If 2 ≤ j ≤ m−2 and {(v0, uj), (v0, uj+1)}∩C = ∅, then fC(j−1) = fC(j+2) =
n+ 1;

Proof. Suppose that C is a dominating set of V (K1,n□Pm) as described. Suppose that
two vertices (vx, uj) and (vy, uk) are not separated by C. If |k−j| ≥ 3, these two vertices
have no neighbor in common. So, we assume j ≤ k (by symmetry) and k − j ≤ 2. We
consider three cases.

Case 1: k = j (the vertices are in the same K1,n-layer). If x, y ̸= 0, then
N [(vx, uj)]∩C = N [(vy, uj)]∩C = {(v0, uj)}. This implies |Bj(C)| < n, which is a con-
tradiction. Without loss of generality, suppose x = 0. Then, {(v0, uj−1), (v0, uj+1)}∩C =
∅, contradicting Condition 2 above.

Case 2: k = j + 1 (the vertices are in two adjacent K1,n-layers). First, consider
x = y = 0. By Condition 2, N [(vx, uj)]∩C = N [(vx, uj+1)]∩C = {(v0, uj), (v0, uj+1)}
and then 3 ≤ j ≤ m − 3, which contradicts Condition 3. If x ̸= 0 and x = y, then
one or two of the vertices (vx, uj) and (vx, uj+1) are in C and they do not have another
neighbor in C, which implies {(v0, uj), (v0, uj+1)} ∩ C = ∅. However, this contradicts
N [(vx, uj)]∩C = N [(vx, uj+1)]∩C, since by Condition 4 fC(j−1) = fC(j+2) = n+1.
If x ̸= y with x, y ∈ [n], then (vx, uj) and (vx, uj+1) have no common neighbor. Now,
without loss of generality, consider x ∈ [n] and y = 0. In this case, 2 ≤ j ≤ m− 2. The
unique neighbor in common with these two vertices is (v0, uj). If they are not separated,
then (v0, uj) ∈ C, fC(j+1) = 0, (v0, uj+2) /∈ C and x /∈ Bj(C). However, by Condition
4 {(v0, uj), (v0, uj+1)} ∩ C = ∅ implies fC(j − 1) = n+ 1, contradicting x /∈ Bj(C).

Case 3: k = j + 2 (the vertices are in non-adjacent K1,n-layers). Note that
x = y, otherwise the vertices have no neighbor in common. Then N [(vx, uj)] ∩ C =
N [(vx, uj+2)] ∩ C = {(vx, uj+1)}, which implies {(v0, uj), (v0, uj+2)} ∩ C = ∅,
contradicting Condition 2 above. □

(a) K1,3□P2. (b) K1,3□P3. (c) K1,3□P4. (d) K1,3□P5.

(e) K1,3□P6. (f) K1,3□P7. (g) K1,3□P8.

(h) K1,3□P9. (i) ID code for K1,4 □P11.

Figure 2. Minimum ID codes for K1,3□Pm, where 2 ≤ m ≤ 9 and for K1,4□P11.

For ease, we present in Figure 2 the code constructions using a grid in which rows
represent the Pm-layers, and the K1,n-layers are represented by columns. Vertices in the



first row and j-th column are (v0, uj), where v0 is the universal vertex of the star K1,n. If
vertex (vi, uj) is included in the code, then a circle appears in the grid’s cell (i, j).

Theorem 4 For m ≥ 4, γID(K1,3□Pm) ≤
{

3m
2
, if m ≡ 0 (mod 8),

⌊3m
2
⌋+ 1, otherwise.

Proof. For 2 ≤ m ≤ 9, we present the codewords of K1,3□Pm in Figures 2(a)-2(h). Let
m = 8q + r, with q ≥ 1. We construct the set C as follows. If r = 0, we add to C for
each block of eight consecutive K1,3-layers the codewords presented in Figure 2(g). If
q > 1 and r = 1, we add for each of the first q−1 blocks of eight consecutive K1,3-layers
the code presented in Figure 2(g) and for the last block of nine consecutive K1,3-layers
the code presented in Figure 2(h). If q > 1 and r ∈ {2, . . . , 7}, we add for each of the
first q blocks of eight consecutive K1,3-layers the code presented in Figure 2(g) and for
the last block of r consecutive K1,3-layers the code presented in the respective Figure
2(a)-2(f). By Proposition 3, C is an ID code. By inspection, it is possible to verify that C
has the described cardinality. □

The next result improves the bound presented in Corollary 2.

Proposition 5 For m ≥ 6, γID(K1,3□Pm) ≥ 4⌊m
3
⌋ − 1.

Proof. (Idea) Let j ∈ {2, . . . ,m−1}. By Corollary 2, fC(j−1)+fC(j)+fC(j+1) ≥ 3.
Suppose that C is a minimum identifying code of K1,3□Pm and for some
j ∈ {2, 3, . . . ,m − 4}, fC(j − 1) + fC(j) + fC(j + 1) = 3. We show that this
implies fC(j + 2) + fC(j + 3) + fC(j + 4) ≥ 5. Note that if fC(j) = 0, since C is
dominating, fC(j − 1) + fC(j + 1) ≥ 4 and we are done. So, we assume fC(j) ̸= 0.
By symmetry, we consider j ≤ m − 4. We have three cases: Case 1: fC(j) = 1, Case
2: fC(j) = 2, and Case 3: fC(j) = 3. In every case, we show that either C is not a
separating set or fC(j + 2) + fC(j + 3) + fC(j + 4) ≥ 5, which, on average, gives the
result we stated. □

Finally, we present ID codes for K1,n □Pm for an arbitrary n and specific m,
which give us an upper bound for γID in these cases.

Theorem 6 If n ≥ 2 and m ≥ 5 is a multiple of 3n− 1, γID(K1,n□Pm) ≤ m(n2+n)
3n−1

.

Proof. First, we show how to recursively construct a set Cn,m in K1,n□Pm, with n ≥ 2 and
m = 3n−1. Let the set C2,5 = {(v0, u1), (v0, u2), (v0, u4), (v0, u5), (v1, u4), (v2, u2)}. For
n ≥ 3, Cn,m = Cn−1,m−3 ∪{(vi, um−1) | 0 ≤ i ≤ n− 1}∪ {(v0, um)}∪ {(vn, uj) | j ≡ 2
(mod 3) and j ≤ m − 3}. See in Figure 2(i) a construction for K1,4□P11. Note that
|C2,5| = 6 and for n ≥ 3 and m ≥ 8, |Cn,m| = |Cn−1,m−3| + n + ⌈m

3
⌉ = n2 + n. Let

q = m
3n−1

. When q = 1, we do C = Cn,m and when q > 1, we add in C for the next q− 1

blocks of adjacent K1,n-layers the code for Cn,3n−1. It follows that |C| = m(n2+n)
3n−1

and,
by Proposition 3, C is an ID code in K1,n□Pm. □

3. Concluding remarks
We present lower and upper bounds for γID in the Cartesian product of a star and a
path graph. The next steps are to generalize the presented results for K1,3□Pm and to
determine closed formulas for the general case.



References
Auger, D. (2010). Minimal identifying codes in trees and planar graphs with large girth.

European Journal of Combinatorics, 31:1372–1384.

Charon, I., Hudry, O., and Lobstein, A. (2003). Minimizing the size of an identifying
or locating-dominating code in a graph is np-hard. Theoretical Computer Science,
290:2109–2120.

Cohen, G., Gravier, S., Honkala, I., Lobstein, A., Mollard, M., Payan, C., and Zémor, G.
(1999). Improved identifying codes for the grid. Electronic Journal of Combinatorics,
6(1).

Goddard, W. and Wash, K. (2013). Id codes in cartesian products of cliques. Journal of
Combinatorial Mathematics and Combinatorial Computing, 85:97–106.

Gravier, S., Moncel, J., and Semri, A. (2008). Identifying codes of cartesian product of
two cliques of the same size. Electronic Journal of Combinatorics, 15(1).

Hedetniemi, J. (2016). On identifying codes in the cartesian product of a path and a
complete graph. Journal of Combinatorial Optimization, 31:1405–1416.

Jean, D. (2023). Watching systems, identifying, locating-dominating and discriminating
codes in graphs. Last accessed on: April 05, 2023.

Karpovsky, M. G., Chakrabarty, K., and Levitin, L. B. (1998). On a new class of codes for
identifying vertices in graphs. IEEE Transactions on Information Theory, IT-44:599–
611.

Rall, D. F. and Wash, K. (2017). On minimum identifying codes in some cartesian product
graphs. Graphs and Combinatorics, 33:1037–1053.


