
Freeze-Tag Remains NP-hard on Binary and Ternary Trees*

Lehilton Lelis Chaves Pedrosa,
Lucas de Oliveira Silva†

1 Institute of Computing
State University of Campinas (Unicamp)

Campinas, SP – Brazil

lehilton@ic.unicamp.br,l220715@dac.unicamp.br

Abstract. The Freeze-Tag Problem (FTP) is a scheduling-like problem moti-
vated by robot swarm activation. The input consists of the locations of a set of
mobile robots in some metric space. One robot is initially active, while the oth-
ers are initially frozen. Active robots can move at unit speed, and upon reaching
the location of a frozen robot, the latter is activated. The goal is to activate
all the robots within the minimum time, i.e., minimizing the time the last frozen
robot is activated, the so-called makespan of the schedule.

Arkin et al. proved that FTP is strongly NP-hard even if we restrict the problem
to metric spaces arising from the metric closure of an edge-weighted star graph,
where a frozen robot is placed on each leaf, and the active robot is placed at the
center of this star [Arkin et al. 2002]. In this work, we continue to explore the
complexity of FTP and show that it keeps its hardness even if further restricted
to binary unweighted rooted trees with frozen robots only at leaves and the ac-
tive robot on its root. Additionally, we prove that a generalized version, whose
domain includes ternary weighted trees, remains hard, even if we require that
every non-root node has precisely one frozen robot.

1. Introduction
The Freeze-Tag Problem (FTP) was introduced in 2002 by Arkin et al. to model the
automatic awakening of a robot swarm that is started by manually turning on a single
robot [Arkin et al. 2002]. The input consists of a set of points in some metric space repre-
senting the location of each mobile robot, as well as a special point in this set representing
the starting robot. The starting robot is initially “active” (also known as “on”, “unfrozen”
or “awake”) and is called the source, while the other robots are initially “frozen” (also
“off” or “asleep”). Frozen robots become active when an active one reaches its location.
Once activated, a robot can move at unit speed and help unfreeze the remaining ones. The
goal is to minimize the time the last frozen robot is activated, the so-called makespan of
the schedule. In the decision version, one is also given a time limit, and the goal is to
decide if all the robots can be activated within this limit.

Frequently, the points correspond to nodes of some underlying graph, and the
distance between two points is the length of a shortest path connecting them. In this work,

*Supported by São Paulo Research Foundation (FAPESP) grant #2022/13435-4 and National Council
for Scientific and Technological Development (CNPq) grant #312186/2020-7.

†Corresponding author.



we consider instances whose corresponding metric spaces arise from the node distances
in some, possibly weighted, tree and assume that such a tree is given in the input.

Depending on the choice of metric, the problem takes different forms. For ex-
ample, Arkin et al. showed that FTP admits a polynomial-time approximation scheme
(PTAS) for Euclidean spaces but has no polynomial time (5/3− ϵ)-approximation for
weighted metric graphs in general [Arkin et al. 2002]. Moreover, Bender et al. showed
that FTP is hard on unweighted general graphs, even with precisely one robot per
node [Arkin et al. 2003].

In the same line, Arkin et al. revealed a dichotomy for the hardness of FTP in
stars graphs that lie in the edge weights’ presence. The problem is NP-hard with them
but becomes polynomially solvable if restricted to unweighted starts [Arkin et al. 2002].
The algorithm they presented to the unweighted case is a greedy one, which is relatively
straightforward to prove optimal: Each active robot currently at the root claims a leaf with
the maximum number of (frozen) robots and goes there to activate them (and then all the
robots at said leaf return simultaneously to the root).

Regarding Euclidean spaces, Abel et al. in 2017 were the first to establish the com-
plexity of FTP in some Euclidean metric space by proving that it’s NP-hard in the plane
with L2 distance [Abel et al. 2017]. This result was followed by a paper by Demaine and
Rudoy, who proved that the problem is also hard in 3D Euclidean space for any Lp metric
with p > 1 [Demaine and Rudoy 2017].

In this work, we complement the results of Arkin et al. [Arkin et al. 2006] by
proving that FTP remains hard if restricted to degree-bounded trees. Namely, we show
that FTP is NP-hard on binary unweighted or ternary weighted rooted trees. Furthermore,
the latter holds in the strong sense even if we require that every non-root node has one
frozen robot.

2. Problem Definition
Consider a metric space over some set V , which is the domain of the problem, with a
corresponding distance function dist : V × V → IR≥0. In this work, we assume that
the domain corresponds to the nodes of some graph G = (V,E), with non-negative edge
weights, and the dist(u, v) corresponds to the length of a shortest path between vertices u
and v. An FTP instance consists of a set of robots R and a special robot v0 ∈ R, called
the source. Each robot vi ∈ R is identified with a location vi ∈ V . Thus R is a subset
of V , possibly with repetition. We assume that robot v0 is initially active and the other
robots are initially frozen.

A solution for an instance (R, v0) is a rooted binary tree T , which is called sched-
ule or wake-up tree. The nodes of this tree correspond to R, and the root is v0. The
children of a node vi in T represent the next destinations of the two robots at vi that will
be available once an active robot first reaches it. If one of these robots stops moving, it
will have no corresponding destination node, and vi will be a leaf or have only one child.
The weight of an edge of T corresponds to the distance between the two corresponding
locations. The length of a longest path between the root and a leaf is the makespan of the
scheduling, which is denoted by cost(T ). The objective of FTP is finding a scheduling T
with minimum makespan. In the decision version, one is also given a time limit of L, and
the goal is to decide whether some scheduling achieves this bound.



In this work, we consider only the offline version of the problem, where the algo-
rithm can query the whole input simultaneously to build a schedule. In the context of the
robot swarm application, this means that each active robot has position information of all
the others and that the active robots can coordinate their movements.

Although not addressed here, some online versions have already been tackled.
In 2006, Hammar et al. studied the FTP from the perspective of online algorithms
[Hammar et al. 2006]. In this version of the problem, instead of receiving all the in-
put at once, an algorithm receives its input serially in pieces. In this case, the perfor-
mance is usually measured as the worst-case competitiveness ratio of the online algo-
rithm, that is, the ratio between the algorithm’s solution value and the one achievable by
an optimal offline algorithm. More recently, in 2019, Brunner and Wellman presented a
(1 +

√
2)-competitive strategy with the makespan as the value. They also provided an

optimality guarantee for metric domains [Brunner and Wellman 2019].

3. Complexity Results

3.1. Binary Trees

In this subsection, we consider the FTP with domain arising from an unweighted binary
input tree T = (V,E) rooted at its source node v0. Furthermore, there is precisely one
frozen robot on each leaf and no other robot. Below, we show that even under these
restrictions, the problem remains hard.

Theorem 1. FTP is NP-hard for the case of unweighted binary rooted trees with a single
frozen robot on each leaf and the source on its root.

The proof is based on a reduction from FTP on edge-weighted star graphs with a
frozen robot on each leaf and source in its center, which is known to be strongly NP-hard
[Arkin et al. 2002], and is illustrated in Figure 1. The main idea employed is to covert
the center node of the star, which is the only one of high degree, into a binary tree and
substitute the weighted edges for very long paths. We only require that these new paths
outweigh the overhead introduced by the center node conversion, ensuring just a multi-
plicative factor in the final makespan.

3.2. Ternary Trees

We now consider a generalization that includes edge weights and relaxes the maximum
degree of nodes to four but restricts the instances such that every node has precisely one
robot. We show that this version is strongly NP-hard.

Theorem 2. FTP is strongly NP-hard for the case of weighted ternary rooted trees with
precisely one frozen robot on each non-root node and the source on its root.

Again the base problem used here is the FTP in edge-weighted star graphs with a
frozen robot on each leaf and the source in its center. The construction looks very much
like the one of Theorem 2 (see Figure 2 for an illustration), but with an additional node
attached to every non-root node of the binary tree using an edge of huge weight. Therefore
each new node, with its corresponding robot, will “occupy” all tree robots and simplify
the whole instance into a star-like domain.



Figure 1. The FTP instance produced by the reduction of Theorem 1.

Figure 2. The FTP instance produced by the reduction of Theorem 2 (thick lines
represent edges of high weight).



4. Conclusion
To further delimit the hardness of FTP in trees, one could consider unweighted or
weighted binary rooted trees with precisely one frozen robot on each non-root node and
the source on its root. We believe that they are both polynomial problems.

If our claim is valid for the unweighted case, a possible next step would be to
generalize the found algorithm to any tree. And upon success, generalize it even further
by constructing a parameterized algorithm for FTP in general unweighted graphs with the
treewidth as a parameter.

In contrast, by Arkin et al., we know that FTP is NP-hard for general unweighted
graphs with precisely one frozen robot on each non-source node [Arkin et al. 2003]. So
we would like to find a broader class of polynomially solvable graph domains where each
node starts with a robot.

References
Abel, Z., Akitaya, H. A., and Yu, J. (2017). Freeze Tag Awakening in 2D is NP-Hard. In

Abstracts from the 27th Fall Workshop on Computational Geometry, pages 105–107.

Arkin, E. M., Bender, M. A., Fekete, S. P., Mitchell, J. S. B., and Skutella, M. (2002).
The Freeze-Tag Problem: How to Wake up a Swarm of Robots. In Proceedings of the
13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), page 568–577.
Society for Industrial and Applied Mathematics.

Arkin, E. M., Bender, M. A., Fekete, S. P., Mitchell, J. S. B., and Skutella, M. (2006). The
Freeze-Tag Problem: How to Wake Up a Swarm of Robots. Algorithmica, 46(2):193–
221.

Arkin, E. M., Bender, M. A., and Ge, D. (2003). Improved Approximation Algorithms
for the Freeze-Tag Problem. In Proceedings of the Fifteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 295–303. Association for Computing
Machinery.

Brunner, J. and Wellman, J. (2019). An Optimal Algorithm for Online Freeze-Tag. In
Farach-Colton, M., Prencipe, G., and Uehara, R., editors, 10th International Confer-
ence on Fun with Algorithms (FUN 2021), volume 157 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 8:1–8:11. Schloss Dagstuhl–Leibniz-Zentrum
für Informatik.

Demaine, E. D. and Rudoy, M. (2017). Freeze Tag is Hard in 3D. In Abstracts from the
27th Fall Workshop on Computational Geometry, pages 108–110.

Hammar, M., Nilsson, B. J., and Persson, M. (2006). The online freeze-tag problem. In
LATIN 2006: Theoretical Informatics, pages 569–579. Springer Berlin Heidelberg.


