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Abstract. Taxonomy of problems in Computer Science has been typically done
with formulations as decision problems. This approach is inadequate for many
search problems of interest when the structure of the instance in itself guarantees
the existence of a positive certificate. In this paper, we provide an introduction
to the class of problems PLS and its connections with finding Pure Nash Equi-
librium in Congestion Games.

1. Introduction
Definition. A search problem 𝐿 is defined by a relation 𝑅𝐿 ⊆ {0, 1}∗ × {0, 1}∗ such that
(𝑥, 𝑦) ∈ 𝑅𝐿 if and only if 𝑦 is a solution to 𝑥. A search problem 𝐿 is called total if and
only if for all 𝑥 there exists 𝑦 such that (𝑥, 𝑦) ∈ 𝑅𝐿.

Definition. A problem 𝐿 is said to be in FNP (Function Nondeterministic Polynomial)
if and only if there exists a polynomial-time algorithm 𝐴𝐿(⋅, ⋅) and polynomial function
𝑝𝐿(⋅) such that

i. ∀𝑥, 𝑦 𝐴(𝑥, 𝑦) = 1 ⟺ (𝑥, 𝑦) ∈ 𝑅𝐿
ii. ∀𝑥 ∶ ∃𝑦 ∶ (𝑥, 𝑦) ∈ 𝑅𝐿 ⟹ ∃𝑧 ∶ |𝑧| ≤ 𝑝𝐿(|𝑥|) ∧ (𝑥, 𝑧) ∈ 𝑅𝐿.

Definition. A problem 𝐿 belongs to FP (Function Polynomial) if there is an algorithm
𝐴 that given any instance 𝑥 ∈ 𝐿, 𝐴 finds 𝑦 such that (𝑥, 𝑦) ∈ 𝑅𝐿 or reports that none
exists with a number of steps of computation bounded by a polynomial in the length of 𝑥.

Definition. (Total FNP) TFNP = {𝐿 ∈ FNP ∣ 𝐿 is total}.
TFNP is a difficult class to study as a whole, mainly because the argument be-

hind the existence of a solution for different problems might differ. Different arguments
providing the existence of solutions call for an analog of NP-completeness for other do-
mains of problems. Next, we discuss the class that relates to the concept of pure Nash
equilibrium in Game Theory.

2. Polynomial Local Search
In many optimization problems finding a global optimum can be difficult enough to the
point that an exhaustive search is the only known way to find the desired certificate. For
these problems, we lower the expectations and, instead of striving for the global optimum,
we content with a local one, according to a neighborhood criterion. An example is the
Maximal Cut, shortened to MAX-CUT.



Definition. Let 𝒢 = (𝑉, 𝐸) be a graph, a cut is a partition of 𝑉 into subsets 𝐴 and 𝐴𝑐.
We call the sum of capacities of edges connecting vertices from 𝐴 to 𝐴𝑐 the cut capacity.

Maximal Cut Problem. Given a graph 𝒢 = (𝑉, 𝐸), find a cut such that its
capacity is at least the size of any other, i.e., a maximal cut.

The decision version of MAX-CUT is NP-complete [Garey and Johnson 1990],
therefore a polynomial-time algorithm in the size of 𝒢 that finds an optimal solution inex-
ists unless P = NP. Local search is an heuristic utilized to provide feasible solutions for
many NP-hard problems [Papadimitriou and Steiglitz 1998], including the MAX-CUT. It
starts with an arbitrary feasible solution and increments the objective function according
to the available neighborhood12.

For MAX-CUT, we consider the neighborhood concept in that two solutions differ
by only a single vertex placement, so moving to 𝐴𝑐 a vertex 𝑣 currently in 𝐴 and vice
versa is a local movement. The cost of the solution (when moving a vertex from 𝐴 to 𝐴𝑐)
increments by an additive factor

∑

𝑢∈𝐴∶(𝑢,𝑣)∈𝐸
𝑐𝑢,𝑣 −

∑

𝑢∈𝐴𝑐∶(𝑢,𝑣)∈𝐸
𝑐𝑢,𝑣. (2.1)

If this difference is positive, then the local movement is valid. For the general case with
nonnegative edge costs, the algorithm may take exponential time in the number of ver-
tices. Figure 1 illustrates a local maximum for a MAX-CUT instance with parts being
denoted by vertices’ colors.

For local search, if we interpret a given feasible solution as a vertex on a graph and
each neighboring feasible solution as vertices connected to it, where the direction of the
edges is given according to valid local movements, we then have a directed acyclic graph
(dag). The vertices representing local optima are sinks – vertices with no outgoing edge –
and the initial feasible solution is a source – vertex with no incoming edge. Such a graph
is sometimes called transition graph in the literature, and for an instance of MAX-CUT,
each vertex in its transition graph is a possible cut.
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Figure 1. Local optimum of a maximal cut instance: 𝑣 in 𝐴 are colored in dark blue, 𝑣 in 𝐴𝑐

colored in pink.

Sink of dag. Given a source vertex in a directed acyclic graph (dag) 𝒢,
find a vertex with no outgoing edges.

1We call neighborhood the set of solutions that differ from a given solution by a minimal possible extent.
2The general procedure for a local search is composed of three implicit subroutines: verification of

feasibility of a solution; inspection of neighboring solutions; and computation of a solution’s cost. All
assumed to run in polynomial time in the length of the input.



For each vertex in 𝒢 there are two possible states when it comes to making a
cut: it either belongs to the part 𝐴 or not, making a total of 2|𝑉| possible cuts. Thus we
say the graph defined for SINK-OF-DAG is exponential in the description of the problem
MAX-CUT and local search may take exponential time in the size of 𝒢.

A problem 𝐿 is said to be in PLS (Polynomial Local Search) if there is a
polynomial-time algorithm that reduces 𝐿 to a SINK-OF-DAG instance. Since, by def-
inition, a connected dag must have at least one source and at least one sink, a solution is
guaranteed to exist. Thus, PLS ⊂ TFNP. It turns out that SINK-OF-DAG is polynomial-
time reducible to MAX-CUT [Schäffer and Yannakakis 1991], making it PLS-complete.

2.1. Congestion Games
Congestion games are a special type of game where each player has her/his strategy at-
tached to a finite set 𝐸 of resources. Each resource has an associated cost, which takes the
number of players choosing it as a parameter. The payoff of a player is a function over
the subset of resources she/he has taken as strategy. Whenever speaking about games,
the assumption of rationality is taken, that is: each player aims to optimize her/his utility
function.

We denote the strategy player 𝑖 picks by 𝑠𝑖 ∈ 𝑆𝑖, where 𝑆𝑖 is the set of all available
strategies for 𝑖, and collectively refer to strategies chosen by other players as 𝐬−𝑖, so that
the strategy profile is 𝐬 = (𝑠𝑖, 𝐬−𝑖).

Definition. (Pure Nash Equilibrium, [Turocy and von Stengel 2003]) A strategy profile
𝐬 = (𝑠𝑖, 𝐬−𝑖) of a cost-minimization game with cost function 𝐶𝑖 for each player 𝑖 ∈ 𝑁
is a pure Nash equilibrium (PNE) if 𝐶𝑖(𝐬) ⩽ 𝐶𝑖(𝑠′𝑖 , 𝐬−𝑖), for all 𝑖 and every unilateral
deviation 𝑠′𝑖 ∈ 𝑆𝑖. In this case, we say that 𝑠𝑖 is a best response to 𝐬−𝑖.

Theorem 2.1. ([Rosenthal 1973]) Every congestion game has at least one
Pure Nash Equilibrium.

Proof. Let 𝐬 be an assignment of strategies for each player, 𝑐𝑒 be the cost function for
resource 𝑒 and 𝑓𝑒 be the number of players picking resource 𝑒.

We define the potential function 𝜙(𝐬) = ∑
𝑒∈𝐸

∑𝑓𝑒
𝑖=1 𝑐𝑒(𝑖). Moreover, under unilat-

eral deviation, we have that

𝜙(𝑠′𝑖 , 𝐬−𝑖) − 𝜙(𝐬) =
∑

𝑒∈𝑠′𝑖⧵𝑠𝑖

𝑐𝑒(𝑓𝑒 + 1) −
∑

𝑒∈𝑠𝑖⧵𝑠′𝑖

𝑐𝑒(𝑓𝑒)

=
∑

𝑒∈𝑠′𝑖

𝑐𝑒(𝑓′𝑒) −
∑

𝑒∈𝑠𝑖

𝑐𝑒(𝑓𝑒)

= 𝐶𝑖(𝑠′𝑖 ) − 𝐶𝑖(𝑠𝑖). (2.2)

Here 𝑓′𝑒 is the number of players picking resource 𝑒 for strategy profile (𝑠′𝑖 , 𝐬−𝑖). The
change in 𝜙 is the change in player 𝑖’s cost when deviating. Since there is a finite number
of assignments of congestible resources, there is a minimum for 𝜙. ■

Congestion games can thus be shown to belong to PLS by computing a local
minimum through means of best-response dynamics, the analogous for local search in



Game Theory, where the neighborhood is defined by the unilateral deviations that benefit
the deviator’s payoff. [Fabrikant et al. 2004] first sketched a proof that congestion games
are PLS-complete through a reduction from MAX-CUT. We present the proof in the
following.

Theorem 2.2. All problems in PLS are polynomial-time reducible to the problem of
finding a pure Nash equilibrium in congestion games.

Proof. Let 𝒢 = (𝑉, 𝐸) be a MAX-CUT instance with each edge 𝑒 ∈ 𝐸 having capacity𝑤𝑒.
We describe an instance of a cost-minimization congestion game for which finding pure
Nash equilibria is equivalent to finding a local maximal cut for 𝒢. The corresponding
instance of the congestion game has a player for each vertex of 𝒢 and two resources 𝑟𝑒 and
𝑟𝑒 for each edge 𝑒 of 𝐺. Each player 𝑣 has two strategies of resources: 𝑠𝑣 = {𝑟𝑒} for all 𝑟𝑒
such that 𝑣 ∈ 𝑒 and 𝑠𝑣 = {𝑟𝑒} for all 𝑟𝑒 such that 𝑣 ∈ 𝑒. Thus, each resource associated with
an edge 𝑒 is available only for the two players corresponding to its endpoints. Moreover,
let 𝑛 = |𝑉|, since each player has two strategies, there is a total of 2𝑛 strategy profiles, in
perfect correspondence with the 2|𝑉| possible cuts for 𝒢.

Let 𝑘 be either 𝑟𝑒 or 𝑟𝑒 and 𝑓𝑘 be the number of players whose strategy includes
𝑘, the cost functions are defined as

𝑐𝑘(𝑓𝑘) =
{
0 if 𝑓𝑘 = 1, else 𝑤𝑒 .

Fix a cut (𝐴,𝐴𝑐). We establish the following bijection: a player 𝑣 who chooses its
strategy 𝑠𝑣 corresponds to a vertex 𝑣 in part 𝐴, and 𝑣 who chooses strategy 𝑠𝑣 corresponds
then to a vertex 𝑣 in part 𝐴𝑐. Let 𝐶(𝐴,𝐴𝑐) be the capacity of the cut. The game has poten-
tial function 𝜙(𝐬) =∑

𝑒∈𝐸 𝑤𝑒 − 𝐶(𝐴,𝐴𝑐), so maximizing the cut capacity is equivalent to
minimizing this potential function. Besides, one can check that under unilateral deviation,
the change in 𝜙 is equal to (2.1), appropriately corresponding pure Nash equilibria – local
minima in the potential function – to local maxima in MAX-CUT. ■

In Figure 1, vertices colored in dark blue correspond to players choosing their re-
spective strategy sets 𝑠𝑣, and vertices colored in pink correspond to players choosing their
respective strategy sets 𝑠𝑣. An edge 𝑒 between vertices of the side of the cut contributes
with 𝑤𝑒 to each of its corresponding players’ payoff. Edges connecting vertices from
different parts contribute with zero to their costs. When a player deviates to a beneficial
strategy, her/his previous payoff contributes with the first summation on (2.1), whilst the
new payoff contributes with the second one. Since we assume the deviation to be ben-
eficial, the first summation is greater than the second one, characterizing a valid local
movement.

3. Conclusion
Whether or not FP is a proper subset of PLS is still an open-problem in Computer Sci-
ence. Even if a proof could show that PLS = FP, a local search heuristic can poten-
tially run in exponential time, so an efficient algorithm to find a PNE is yet to be seen,
if one such algorithm exists. For sources in Algorithmic Game Theory, we recommend
[Nisan et al. 2007], in particular Chapter 18, which is the most relevant this work.
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Schäffer, A. A. and Yannakakis, M. (1991). Simple local search problems that are hard to
solve. SIAM J. Comput., 20(1):56–87.

Turocy, T. L. and von Stengel, B. (2003). Game theory. In Bidgoli, H., editor, Encyclo-
pedia of Information Systems, pages 403–420. Elsevier, New York.


