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Abstract. This paper proposes a two-phase approach to integrating the capa-
citated lot-sizing (CLSP) and hybrid flow shop (HFS). First, we construct an
initial solution exploring three heuristics: relax-and-fix, LP-and-fix, and greedy.
Next, we try to improve the initial solution through a fix-and-optimize heuristic
that decomposes the original MIP per period. Numerical experiments show that
combining the greedy heuristic with fix-and-optimize can overcome the alterna-
tives, obtaining small gaps for most cases, even for large-size instances.

Resumo. Este artigo propõe uma abordagem em duas fases para resolver o pro-
blema integrado de lot-sizing capacitado (CLSP) com flow shop hı́brido (HFS).
Constrói-se uma solução inicial explorando três heurı́sticas: relax-and-fix, LP-
and-fix e gulosa. Em seguida, aprimora-se a solução inicial usando a heurı́stica
fix-and-optimize, que decompõe o MIP original em subproblemas menores, um
por perı́odo. Experimentos numéricos mostram que combinar uma heurı́stica
gulosa com fix-and-optimize pode superar as alternativas, obtendo gaps meno-
res para a maioria dos casos, mesmo para instâncias de grande porte.

1. Introduction
Lot-sizing ([Pochet and Wolsey 2006]) and production scheduling ([Michael 2008])
are problems that arise in the context of industrial decision-making. Recent
research addresses Capacitated Lot-Sizing (CLSP) ([Bitran and Yanasse 1982])
and Hybrid Flow Shop (HFS) ([Ruiz and Vázquez-Rodrı́guez 2010]) inte-
gration. The aim is to define a model that respects shop floor cons-
traints and capabilities and avoids re-planning while reducing costs
([Ramezanian et al. 2013, Masmoudi et al. 2016, Qin et al. 2019, Rodoplu et al. 2020,
Silva and Mateus 2022, Silva and Mateus 2023]). However, both problems are NP-Hard
([Bitran and Yanasse 1982, Ruiz and Vázquez-Rodrı́guez 2010]), a fact that limits sol-
ving large instances using exact approaches. On the other hand, heuristics can overcome
this limitation by obtaining good-quality solutions quickly, even for large cases.

This paper solves the integration of CLSP-HFS using MIP-heuristics in a two-
phase approach that tackles an adapted mixed-integer programming (MIP) formulation
derived from [Silva and Mateus 2022] that considers the original capacitated multipro-
duct, multiperiod, and multistage problem, but also includes sequence-dependent se-
tup times and costs. Exact models have proven to be effective in solving small-scale



cases. To address larger cases, decomposition heuristics relax-and-fix (R&F) and fix-
and-optimize (F&O) have been successfully employed, respectively, to generate and im-
prove solutions in production problems ([Pochet and Wolsey 2006, Sahling et al. 2009,
Helber and Sahling 2010, Lang and Shen 2011, Toledo et al. 2015]). The R&F method
decomposes the mixed-integer programming (MIP) variables, denoted as v ∈ {0, 1}, into
Ω disjoint sets Q1, . . . , QΩ. It then systematically solves Ω subproblems. At the ω-th
iteration, the SUBMIP(ω)

RF is solved by keeping the constraints intact and redefining the
binary variables as follows: if v ∈ (Q1 ∪ . . . ∪ Q(ω−1)), v is set to v̂ from the previous
iterations; if v ∈ Qω, v is constrained to {0, 1}; and if v ∈ (Q(ω+1) ∪ . . . ∪ QΩ), v is
relaxed to 0 ≤ v ≤ 1. Similarly, the F&O method solves SUBMIP(ω)

FO by fixing v to v̂ if
v ∈ (

⋃
i = 1ΩQi\Qω), or keeping v ∈ {0, 1} if v ∈ Qω. Recent works also use these heu-

ristics to solve integrated problems. [Mohammadi and Fatemi 2010] designed an R&F al-
gorithm to solve lot-sizing with a permutational flow shop and sequence-dependent setup.
[James and Almada-Lobo 2011] hybridize the R&F heuristic with local search methods
to solve the integration of capacitated lot-sizing with parallel machines. Some works
investigate how different decomposition strategies perform with R&F or F&O. For exam-
ple, [Schimidt et al. 2019] tested six strategies that combine machines, stages, products,
and periods. [Araujo et al. 2021] used information about the chronological order of pe-
riods, product and period demands, flexibility and efficiency of the available machines,
and discrepancy in the processing times when decomposing the original problems in sub-
MIPs. [Silva and Mateus 2023] addressed the integration of lot-sizing and hybrid flow
shop by combining the R&F and F&O heuristics to solve an alternative formulation for
CLSP-HFS based on precedence variables. They show that period-based decomposition
achieves smaller gaps than product-based and stage-based strategies and even than the
MIP model solved using a commercial solver. They start from a good-quality solution ge-
nerated by the R&F heuristic that consumes 3/4 of the total time budget (three hours). The
F&O heuristic uses the remaining 1/4 fraction of the time to improve the initial solution.
Although the combined heuristic achieved gaps up to 2% for most cases, some instances
could not be solved. In cases with a significant number of products (≥ 50), the R&F
heuristic cannot draw an initial feasible solution since it depends strongly on solving sub-
MIPs using branch-and-bound (B&B) algorithm – more specifically, one sub-problem by
each period of the planning horizon. Given this fact, a hypothesis can be raised that com-
petitive solutions in quality can be obtained by overcoming the combined R&F with F&O
approach. For this, starting from initial solutions computed quickly, combined with an
improvement by the F&O heuristic, can lead to better solutions even for large instances,
assigning most of the time budget to the improvement phase.

2. Numerical Experiments

To check the hypothesis, we execute numerical experiments using a set of randomly gene-
rated instances adapted from [Silva and Mateus 2022]. They were carried out on a com-
puter system with Intel(R) Core(TM) i7-4790K CPU @ 4.00GHz 16 GB RAM DDR3
1333 MHz running Linux Ubuntu with codes implemented using Python 3 and Gurobi
9.1.2 to solve the MIP models. The benchmark comprises instances with 30, 40, 50 and
70 products that can be processed in 3 heterogeneous machines per stage, in 3 different
stages of production, to meet the demand in the horizon of 8 periods. The benchmark is
separated into instances with high (H) and low (L) setup costs to evaluate the impact of



these costs on algorithm performance. These instances are solved along three hours of
time budget using three alternatives: (i) the combined R&F with F&O heuristic as propo-
sed by [Silva and Mateus 2023]; (ii) a combined LP-and-Fix ([Pochet and Wolsey 2006])
with F&O heuristic; and (iii) a combined Greedy with F&O heuristic, proposed in this
work. In particular, the greedy heuristic is simple and works as follows. Assuming that
we will produce the required demand for each product and period, the corresponding lots
of products are scheduled in the available machines by stage, one by one. It computes
the most economical way to append a given lot of product in an existing sequence of
products reducing the costs involved in the corresponding setup to prepare the chosen
machine. For details about how to compute the setup cost, see the original formulation
in [Silva and Mateus 2022]. Regarding the budget, R&F uses 3/4 of the time to construct
an initial solution because it demands enough time to solve each sub-problem. The other
alternatives are free to split the time between the construction and improvement phases.
After drawing an initial solution, the F&O uses the remaining time to improve it.

Tabela 1. Results obtained from running the alternatives over the benchmark

R&F + F&O Greedy + F&O LP&Fix + F&O

GapRF GapFO Time GapGR GapFO Time GapLF GapFO Time
Inst. L.B (%) (%) (s) (%) (%) (s) (%) (%) (s)

30L.1 39.231 — — — 14,32 0,71 8.818 5,36 0,71 10.805
30L.3 41.021 0,96 0,86 10.800 16,58 0,74 10.800 3,31 0,74 10.800
30L.5 42.672 — — — 15,68 ⋆ 0,39 4.216 2,14 2,02 441
30L.7 42.025 1,12 0,73 10.800 17,99 ⋆ 0,70 8.022 3,30 2,90 1.492
30L.9 40.905 2,11 1,23 10.800 17,60 ⋆ 0,98 10.800 6,46 5,06 3.142

30H.1 98.762 — — — 34,73 ⋆ 1,30 10.800 7,24 1,58 10.800
30H.3 97.534 2,64 1,51 10.800 31,73 ⋆ 1,39 10.005 7,35 1,57 10.800
30H.5 100.505 3,08 1,54 10.800 36,88 10,20 8.091 6,38 ⋆ 1,57 10.800
30H.7 99.357 2,10 1,03 9.992 24,31 ⋆ 0,88 10.539 4,96 3,62 3.777
30H.9 98.220 3,44 1,79 10.800 19,94 15,40 2.707 9,36 ⋆ 1,23 10.482

40L.1 54.129 1,84 0,82 10.800 12,22 ⋆ 0,78 10.800 2,37 1,44 7.356
40L.3 55.689 2,14 0,82 10.800 14,95 ⋆ 0,59 10.800 3,82 0,96 10.800
40L.5 52.799 2,21 1,28 10.800 16,52 1,05 10.800 3,82 ⋆ 0,89 10.800
40L.7 52.490 2,01 1,13 10.800 16,71 0,94 10.800 4,68 ⋆ 0,91 10.800
40L.9 53.441 2,68 ⋆ 1,22 10.800 13,92 8,58 4.062 5,36 1,34 10.800

40H.1 129.099 7,05 2,58 10.800 19,13 ⋆ 2,01 10.800 8,52 2,17 10.800
40H.3 129.602 6,76 2,24 10.800 23,01 ⋆ 1,86 10.800 — — 10.816
40H.5 127.942 6,16 3,01 10.800 18,33 14,09 2.715 9,32 ⋆ 2,19 10.800
40H.7 127.501 5,81 1,74 10.800 27,07 ⋆ 1,64 10.800 5,82 1,94 10.800
40H.9 128.743 7,93 2,94 10.126 26,93 2,20 10.800 9,53 ⋆ 2,19 10.800

50L.1 65.990 4,46 1,92 10.800 15,23 ⋆ 1,34 10.800 — — 10.827
50L.3 65.691 3,75 1,55 10.800 11,84 1,24 10.800 4,12 ⋆ 1,09 10.800
50L.5 68.414 4,29 1,73 10.800 11,20 ⋆ 1,40 10.800 — — 10.827
50L.7 67.531 3,75 2,18 10.800 12,66 ⋆ 1,29 10.800 5,23 1,49 10.800
50L.9 67.072 4,44 1,82 10.800 15,54 ⋆ 1,11 10.800 — — 10.825

50H.1 158.923 — — — 18,95 ⋆ 2,43 10.800 — — 10.827
50H.3 157.415 4,38 2,35 10.800 18,82 ⋆ 1,54 10.800 — — 10.830
50H.5 160.847 — — — 21,38 ⋆ 1,79 10.800 — — 10.829
50H.7 160.499 7,69 2,78 10.800 18,67 ⋆ 1,90 10.800 4,24 2,41 10.800
50H.9 160.653 — — — 51,24 ⋆ 2,12 10.800 — — 10.827

70L.1 94.577 — — — 10,02 ⋆ 1,84 10.800 — — —
70L.3 92.551 — — — 10,63 ⋆ 1,80 10.800 — — —
70L.5 89.920 — — — 12,62 ⋆ 2,21 10.800 — — —
70L.7 96.017 — — — 12,29 ⋆ 1,77 10.800 — — —
70L.9 91.753 — — — 10,94 ⋆ 2,03 10.800 — — —

70H.1 219.015 — — — 18,31 ⋆ 2,81 10.800 — — —
70H.3 219.640 — — — 17,69 ⋆ 4,14 10.800 — — —
70H.5 220.610 — — — 14,58 ⋆ 2,87 10.800 — — —
70H.7 218.991 — — — 15,45 ⋆ 2,67 10.800 — — —
70H.9 22.1975 — — — 16,04 ⋆ 2,96 10.800 — — —

Table 1 shows the results. Column ‘L.B.’ presents the best bound computed by
B&B. Columns ‘Gap (%)’ presents, respectively, the gap obtained from the initial and



final solution of the combined approaches compared to the ‘L.B.’. Finally, ‘Time (s)’ re-
ports the total runtime. Void cells indicate that the constructive heuristics found no initial
feasible solution, while cells with (⋆) indicate the alternative with the best performance
for a given instance. First, the combined Greedy with F&O heuristic obtained smaller
gaps than the alternatives for 75% of the cases. Also, it computed feasible solutions for
all cases, independent of the problem size. Alternatives R&F with F&O e LP-and-fix
with F&O sometimes fail to find feasible solutions, especially when more products are
involved. The time allocated for the R&F is fixed, and the subproblems with 50 products
or more contain a high number of binary variables and constraints, so this time may be
insufficient to find a feasible solution. The time assigned to the LP-and-fix is flexible.
However, it can also consume the whole budget to draw an initial solution if the linear
relaxation of the MIP model returns fractional values for most of the binary variables that
decide machine allocation and sequencing. Since CLSP-HFS is a minimization problem,
scheduling constraints derived from [Silva and Mateus 2022] tend to fractions most of
these binary variables to reduce the total setup cost in the relaxation. So, the LP-and-fix
fixes a few integral variables from the linear relaxation and solves the MIP to determine
the other ones. It can be time-consuming for large instances and can return no initial so-
lution if the budget expires without computing a feasible solution in the B&B. Otherwise,
R&F or LP-and-fix draws a feasible solution within the budget, and F&O improves it
using the remaining time. With less time dedicated to the improvement phase, it results
in gaps larger than the Greedy with F&O alternative. Second, if we evaluate only the
constructive methods, we find that the simple Greedy heuristic returns low-quality gaps.
Given the complexity of the scheduling combinatorics, the schema used to schedule a lot
of a given product cannot compute more economical choices. Despite it, it consumes less
time to draw an initial solution than the alternatives (e.g., ∼ 60 seconds to compute a
solution with 70 products) and releases almost the total time budget to the improvement
phase via F&O. Finally, we conclude that H-instances are more complicated to solve than
L-instances because the larger gaps obtained for them.

3. Concluding Remarks

Experimental results suggest that coupling the F&O heuristic as an improvement method
to simple greedy or MIP-heuristics can potentially find good-quality solutions even for
large-size instances, as hypothesized. In future works, we suggest designing a better
greedy heuristic and adopting stronger alternative formulations with LP-and-fix to allow
fixing more binary variables from the corresponding linear relaxation.
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Sahling, F., Buschkühl, L., Tempelmeier, H., and Helber, S. (2009). Solving a multi-
level capacitated lot sizing problem with multi-period setup carry-over via a fix-and-
optimize heuristic. Computers & Operations Research, 36(9):2546–2553.

Schimidt, T. M. P., Tadeu, S. C., Loch, G. V., and Schenekemberg, C. M. (2019). Heu-
ristic approaches to solve a two-stage lot sizing and scheduling problem. IEEE Latin
America Transactions, 17(03):434–443.

Silva, D. M. and Mateus, G. R. (2022). Formulações de precedência e fluxo em redes
para o problema integrado de lot-sizing capacitado com hybrid flow shop. In Anais do
LIV Simpósio Brasileiro de Pesquisa Operacional, Juiz de Fora. Galoá.
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