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Universidade Federal do Rio de Janeiro (UFRJ) – Rio de Janeiro – RJ – Brazil

3Instituto de Matemática e Estatı́stica
Universidade Federal Fluminense (UFF) – Niterói – RJ – Brazil
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Abstract. We study the clique-number of the timbral graphs Tn,k,ℓ. The vertex
set of Tn,k,ℓ is the set of all words of length k built on an alphabet of n symbols
and two vertices are adjacent when they agree in exactly ℓ coordinates. We
provide lower and upper bounds for the general case and determine ω(Tn,k,1)
when k−1 ≤ n is a prime power, showing the correspondence between a clique
with n2 vertices in Tn,n+1,1 and an affine plane of order n.

1. Introduction
We study the clique-number of the timbral graphs Tn,k,ℓ, first mentioned in
[Akhmedov and Winter 2014]. We provide lower and upper bounds for the general case
and determine ω(Tn,k,1) when k − 1 ≤ n is a prime power, showing the correspondence
between a clique with n2 vertices in Tn,n+1,1 and an affine plane of order n.

The vertex set of Tn,k,ℓ is the set of all words of length k built on an alphabet of
n symbols and two vertices are adjacent when they agree in exactly ℓ coordinates. In
[Akhmedov and Winter 2014], the authors define the timbral graph as a model for a very
specific way of composing music, based on the enumeration of musical elements through
hamiltonian cycles.

This graph class generalizes the Hamming graphs, which are defined in the same
set of vertices as Tn,k,ℓ, being that two vertices are adjacent when they differ by exactly
one symbol, that is, when they agree in k − 1 coordinates.

In the bibliography on graph theory, we find many other classes of
graphs which are related to or generalize the Hamming graphs [Sharifiyazdi 2007,
Imrich and Klavzar 1996, Harney 2017]. One of those, which has many applications
in coding theory [Lint 1995], is the class of the Hamming-distance graphs Hn(k, d)
[Harney 2017], in which two vertices are adjacent when they differ in at least d co-
ordinates. In some papers these graphs are ambiguously called Hamming graphs
[Rouayheb and Georghiades 2011, Sloane 1989].

One of the main connections between Hn(k, d) and the coding theory, as posed
in [Sloane 1989], is the problem of finding the maximum size An(k, d) of a code whose
words are elements of Zk

n = Zn × · · · × Zn︸ ︷︷ ︸
k times

and the minimum hamming distance between



any two words is greater than or equals to d. In graph theory, this problem is equivalent to
finding ω(Hn(k, d)), the maximum size of a clique in the Hamming-distance graph. We
also observe that the graph Hn(k, d) is the union of the graphs Tn,k,ℓ, when ℓ varies from
0 to k − d. Then, the study of ω(Tn,k,ℓ) may shed some light on An(k, d). On the other
hand, this close connection between the Hamming-distance and the timbral graphs can
broaden the perspective from which Tn,k,ℓ can be studied.

In what follows, n, k and ℓ are nonnegative integers such that n ≥ 2 and k ≥ ℓ+1.

2. Bounds on ω(Tn,k,ℓ)

To obtain bounds for the clique number of timbral graphs, it is wise to first investigate the
particular case when ℓ = 0. Note that if we take a word u ∈ Zℓ

n, the subset of vertices of
Tn,k,ℓ that are prefixed by u induces a subgraph isomorphic to Tn,k−ℓ,0. Thus, ω(Tn,k−ℓ,0)
is a lower bound for ω(Tn,k,ℓ). Our search for bounds on the clique number of timbral
graphs begins with the following proposition.

Proposition 1. ω(Tn,k,0) = n.

As we have seen, whenever ℓ ≥ 1, Tn,k,ℓ has a subgraph isomorphic to Tn,k−ℓ,0.
Thus, we have:

Corollary 1. ω(Tn,k,ℓ) ≥ n.

The proof of Proposition 1 uses the fact that Tn,k,0 is a n-partite graph. To deal
with the general case, we can adapt this idea to show that Tn,k,ℓ is a (nℓ+1)-partite graph.
This gives us the following:

Theorem 1. ω(Tn,k,ℓ) ≤ nℓ+1.

Before we proceed, we need some definitions.

Definition 1. Let K be a clique of Tn,k,ℓ, u ∈ K, and S be a subset of Zk such that
|S| = ℓ. The (u, S)-part of K is the set KS(u) = {v ∈ K : Ic(u, v) = S}, where
Ic(u, v) = {i ∈ Zk : ui = vi}.

We observe that u /∈ KS(u), since ℓ < k. Our goal is to obtain a new bound for
ω(Tn,k,ℓ) by stipulating how many non-empty (u, S)-parts can coexist in a clique K and
what is the maximum size of these parts.

Definition 2. Let K be a clique of Tn,k,ℓ and u ∈ K. We denote by PK(u) the family
of the ℓ-subsets of Zk such that KS(u) is non-empty. Formally, we have PK(u) = {S ∈(Zk

ℓ

)
: KS(u) ̸= ∅}.

For a fixed vertex u, the set {KS(u) : S ∈ PK(u)} is a partition of K \ {u}.

Theorem 2. Let K be a clique of Tn,k,ℓ and u ∈ K. Then, |K| ≤ |PK(u)|(n− 1) + 1. As
a consequence, ω(Tn,k,ℓ) ≤

(
k
ℓ

)
(n− 1) + 1.

Proof. Let K be a clique that contains u. For any S ∈
(Zk

ℓ

)
, the set KS(u) ∪ {u} corre-

sponds to a clique of Tn,k−ℓ,0, since we can distinguish the vertices in KS(u) only by the
coordinates in Zk \ S and any two vertices in KS(u) differ in all these coordinates. Thus,
by Proposition 1, |KS(u) ∪ {u}| = |KS(u)| + 1 ≤ ω(Tn,k−ℓ,0) = n, which means that
|KS(u)| ≤ n− 1. Since we are partitioning K in |PK(u)| distinct non-empty parts of the
form KS(u) and a part {u}, the theorem holds. ■



In many cases, this bound is not tight, as we are not taking into account the rela-
tionship between vertices at different parts–although ω(Tn,k,0) reaches the bound, as we
have seen. If |PK(u)| = 1, then n− 1 is the best bound we can achieve for the size of the
part. However, if there are at least two distinct parts in PK(u), we can obtain a new upper
bound for the size of K.

Lemma 1. Let K be a clique and u ∈ K. If {KS(u), KS′(u)} ⊆ PK(u), then

|KS(u)| ≤
⌊k − 2ℓ+ |S ∩ S ′|

ℓ− |S ∩ S ′|

⌋
.

Since the bound in Lemma 1 increases with |S ∩ S ′|, the most restrictive upper
bound for KS(u), for fixed S, is obtained through the subset S ′ ∈ PK(u) that minimizes
|S ∩ S ′|. Accordingly, we define µ(S) = min{|S ∩ S ′| : S ′ ∈ PK(u)}. Now, we apply
the bound in Lemma 1 to obtain an upper bound for the size of K.

Theorem 3. Let K be a clique and u ∈ K. If |PK(u)| ≥ 2, then

|K| ≤ 1 +
∑

S∈PK(u)

⌊k − 2ℓ+ µ(S)

ℓ− µ(S)

⌋
.

As a consequence, ω(Tn,k,ℓ) ≤ max{1 +
(
k
ℓ

)
(k − ℓ− 1), n}.

The bound in Theorem 3 is not very helpful when we do not know much about
the structure of the clique K, but it can be particularly useful in some cases, as of when
ℓ = 1, which is the subject of the next section.

3. Clique-Number of Tn,k,1

In this section, we consider the case where ℓ = 1. Combining the bounds obtained in
Section 2, we first reduce the problem to the analysis of three cases:

1. If n < k − 1, then Theorem 1 gives us our best upper bound, which states that
ω(Tn,k,1) ≤ n2.

2. If k− 1 ≤ n < (k− 1)2, then ω(Tn,k,1) ≤ (k− 1)2 is our best upper bound, given
by Theorem 3.

3. If (k − 1)2 ≤ n, then ω(Tn,k,1) = n, combining theorems 1 and 3.

As we have equality in Case 3, we are left with the problem of investigating the
bounds obtained in the other two cases. From now on, we consider k−1 ≤ n < (k−1)2,
leaving the analysis of Case 1 for another occasion. Our main result is:

Theorem 4. Let k − 1 ≤ n < (k − 1)2. Then, ω(Tn,k,1) ≥ (k − 1)2 if and only if there is
an affine plane of order k − 1.

We recall that an affine plane is a structure A = (P,L, I), where P is the set of
points, L is the set of lines, and I ⊆ P× L is the incidence relation, satisfying:

i. Every two points are incident to a unique common line.
ii. Given a line l and a point P that is not incident to l, there is a unique line l′ that is

incident to P and does not intersect l.
iii. There are four points such that no three of them are incident to the same line.



The order of an affine plane is the number of points incident to a single line, which
happens to be the same for every line in L. Also, an affine plane of order n has n2 points
and n(n+1) lines, which can be partitioned in n+1 classes of parallel lines [Shult 2010].

We break the proof of Theorem 4 into two lemmas. First, we show that every
clique K of Tn,k,1 with (k − 1)2 vertices is such that only k − 1 values are represented
in each coordinate, that is, the set Ri = {vi : v ∈ K} has exactly k − 1 elements, for
all i ∈ Zk. Thus, we can build bijections σi between Ri and Zk−1 to get a correspondent
clique in Tk−1,k,1.

Lemma 2. Let k − 1 ≤ n < (k − 1)2. Then, ω(Tn,k,1) = (k − 1)2 if and only if
ω(Tk−1,k,1) = (k − 1)2.

Next, we show that a clique of Tn,n+1,1 = Tk−1,k,1 with n2 vertices can be viewed
as a representation of an affine plane of order n, where the vertices are points and the
edges represent the existence of a unique line between two points.

Lemma 3. Let k − 1 ≤ n < (k − 1)2. Then, ω(Tn,n+1,1) ≥ n2 if and only if there is an
affine plane of order n.

It is known that there is an affine plane of order n whenever n is a prime power,
which comes from the finite field Fn. Thus, we obtain:

Corollary 2. If n ≥ k − 1 is a prime power, then ω(Tn,k,1) ≥ (k − 1)2.

Moreover, for all ℓ ≥ 1, there is a subgraph of Tn,k,ℓ isomorphic to Tn,k−ℓ+1,1,
which gives us the following:

Corollary 3. If ℓ ≥ 1 and k − ℓ ≤ n is a prime power, then ω(Tn,k,ℓ) ≥ (k − ℓ)2.

4. Perspectives
We review our results for the clique-number of Tn,k,1, for a better understanding of what
remains to be done. The cases we treated here were:

• If n < k − 1, then n ≤ ω(Tn,k,1) ≤ n2.
• If k − 1 ≤ n < (k − 1)2, we have two cases:

– If k − 1 is a prime power, then ω(Tn,k,1) = (k − 1)2.
– If k − 1 is not a prime power, then n ≤ ω(Tn,k,1) ≤ (k − 1)2.

• If (k − 1)2 ≤ n, then ω(Tn,k,1) = n.
A natural question is that of knowing in which cases the upper bound given by

Theorem 4 is tight when k − 1 ≤ n < (k − 1)2 and k − 1 is not a prime power. Since
the existence of an affine plane whose order is not a prime power is currently an open
question, we do not know how to determine ω(Tn,k,1) in this case.

We leave the task of studying the impact of our results on the problem of deter-
mining An(k, d) for future work. There is still room, also, to improve our bounds on
ω(Tn,k,ℓ), observing how the bounds apply to other values of ℓ. As we saw above, even
the case when ℓ = 1 is not yet closed, as we do not know the exact behavior of ω(Tn,k,1)
neither when k − 1 is not a prime power nor when n < k − 1. Moreover, the connec-
tion between a maximum clique of Tn,n+1,1 and an affine plane of order n may give rise
to another approach to investigate the existence of affine planes of order n. Finally, one
could return to musical composition with our results to see how they might affect or even
inspire a compositional method based on timbral cliques.
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