
An efficient algorithm to add up-links to a rooted tree to
obtain a minimum cost 2-connected graph

Gabriel Morete de Azevedo1, Yoshiko Wakabayashi1

1Instituto de Matemática e Estatı́stica – Universidade de São Paulo (USP)
Av. Prof. Luciano Gualberto, 1171 - Butantã, São Paulo - SP, 05508-090

{morete, yw}@ime.usp.br

Abstract. We present an efficient algorithm to solve a special case of the fol-
lowing node-connectivity augmentation problem. Given a tree T = (V,E) and
an additional set L ⊂

(
V
2

)
of edges, called links, L ∩ E = ∅, each one with

a rational nonnegative cost, find a minimum cost set of links F ⊆ L such that
T + F is 2-connected. In general form, this problem is NP-hard. We focus on
the up-link variation, where the tree T has a root, and every link is an edge from
a node to its ancestor. We present a linear formulation for this problem together
with a proof of integrality and an efficient combinatorial algorithm for it.

1. Introduction
Connectivity augmentation problems were introduced by [Eswaran and Tarjan 1976]
and rapidly became a central topic in the design of survivable networks. In these
problems, we are given a graph G = (V,E) and we wish to augment by 1 the
node-connectivity or the edge-connectivity of G by economically adding new edges.
The new edges, called links, are elements of a given set L ⊂

(
V
2

)
and have non-

negative costs, specified as a cost vector c ∈ QL
≥0. In both variations (node

and edge), even in the special case in which G is a tree, these problems are NP-
hard [Frederickson and Ja’Ja’ 1981]. Here, we restrict our attention to this special case
and denote the node version as NC-WTAP. For the edge-connectivity version, many
approximation algorithms have been designed, with the best approximation guarantees
obtained so far being 1.393 for uniform costs by [Cecchetto et al. 2021], and 1.5 + ε for
general costs by [Traub and Zenklusen 2022]. For NC-WTAP, the results are scarcer. For
instances with uniform costs, [Nutov 2021] proposed a 1.91-approximation, the first with
a better-than-two guarantee; later, [Angelidakis et al. 2023] improved the approximation
ratio to 1.892. For general costs the 2-approximation of [Frederickson and Ja’Ja’ 1981] is
still the best known.

We focus on a special case of NC-WTAP, named here Up-link NC-WTAP. For
this problem, the input is a quadruple (T, L, r, c), where T is a tree with root r, L is a set
of up-links and c is the cost vector of the up-links in L. In this setting, a link ℓ = uv in L
is called an up-link if u is an ancestor of v (that is, u is contained in the vr-path in T) or
v is an ancestor of u. (When u is an ancestor of v, we also say that v is a descendant of
u.) The up-link version for edge-connectivity augmentation is defined analogously, and
for it, a large body of literature is known [Adjiashvili 2017, Traub and Zenklusen 2021,
Bamas et al. 2022], but the node-connectivity variant has remained unexplored.

There are many linear formulations for NC-WTAP, see [Grout, Logan 2020]. We
present a novel formulation for Up-link NC-WTAP, along with a proof of integrality of

the corresponding polyhedron. Moreover, we present a combinatorial algorithm, which is
the new state-of-the-art result in terms of efficiency.

2. A linear formulation for Up-link NC-WTAP

First, we present a linear formulation for Up-link NC-WTAP. Let (T = (V,E), L, r, c)
be an instance of this problem. For each X, Y ⊆ V , define δL(X, Y) := {xy ∈ L : x ∈
X, y ∈ Y }. When Y = X , we simply write δL(X). For a graph H , let Π(H) be the family
of non-empty partitions of the connected components of H . For a partition P ∈ Π(H),
let |P| be the number of parts (or classes) of P . For a part P ∈ P , we consider that P is
the set of vertices of the connected components of H in P . For each v ∈ V − r, let v−

be the direct ancestor of v in T , let N+(v) be the set of direct descendants of v, and let Tv

be the subtree containing v and its descendants. We may assume that r has a single direct
descendant, denoted by r+. The following is a relaxed linear formulation for NC-WTAP,
requiring that, after removing any node, the augmented graph contains a spanning tree.

Minimize
∑
ℓ∈L

c(ℓ)x(ℓ) LPNC(T, L, r, c)

subject to
∑
P∈P

x(δL(P)) ≥ 2|P| − 2, for w ∈ V and P ∈ Π(T − w), (1)

x ≥ 0.

For the case of Up-link NC-WTAP, we may simplify the formulation above to:

Minimize
∑
ℓ∈L

c(ℓ)x(ℓ) LPUNC(T, L, r, c)

subject to x(δL(Tv)− δL(v
−)) ≥ 1, for v ∈ V − {r, r+}, (2)

x ≥ 0.

Restriction (2) enforces that, when a node is removed, every resulting child sub-
tree is connected to one of its ancestors. In the up-link setting, every constraint of
LPNC(T, L, r, c) is satisfied by a solution of LPUNC(T, L, r, c). Indeed, for each v ∈ V ,
consider a restriction of type (1) arising from a partition {P1, . . . , Pz} ∈ Π(T − v) with
T − Tv ⊆ P1. Let x be a feasible solution of LPUNC(T, L, r, c). Then, by restriction (2),
we have that x(δL(P1, Pi)) ≥ 1 for i = 2, . . . , z, since there are no links crossing subtrees
of child vertices of v. Hence,

∑
i∈[z] x(δL(Pi)) ≥ 2z − 2, and therefore, x satisfies (1).

Moreover, we have the following theorem.

Theorem 1. For every instance (T, L, r, c) of Up-link NC-WTAP, the polyhedron asso-
ciated with LPUNC(T, L, r, c) is integral.

The proof of Theorem 1 follows the same steps as the proof of an equivalent
theorem for edge-connectivity (Lemma 2.1 of [Adjiashvili 2017]).

3. A fast combinatorial algorithm for Up-link NC-WTAP

We use dynamic programming to solve Up-link NC-WTAP. For each v ∈ V − r,
define DP(v) as the least cost set of links that, when added to T , ensures that node

v, its ancestors, and its descendants in T , are in a same component, even after re-
moving any node from V (Tv−). If v is a leaf node, then DP(v) is a minimum cost
link incident to v. For uw ∈ L, define Puv as the path from u to w in T . Define
Lv := {uw ∈ L : u ∈ V (Tv), w ∈ V (T − Tv−)}. In general, the cost of DP(v) is
given by:

c(DP(v)) := min
ℓ∈Lv

{c(ℓ) + c(DP(Rv,ℓ))} , (3)

where Rv,ℓ are the root nodes of Tv − Pℓ and DP(Rv,ℓ) = ∪w∈Rv,ℓ
DP(w). Note that

a straightforward approach to solving this recurrence leads to an O(|V |2|L|) algorithm.
We present an efficient way to compute (3). The algorithm computes the recurrence in
a bottom-up approach, where each node is processed before all its ancestors, following
a reverse topological sorting of (T, r). To handle the recurrence efficiently, we store
candidate links in a Fibonacci heap1 (see Chapter 19 of [Cormen et al. 2009]). For each
v ∈ V , the cost of using ℓ ∈ Lv to solve the recurrence for v is given by

b(v, ℓ) := c(ℓ) + c(DP(Rv,ℓ)).

Furthermore, we introduce bh(h, ℓ) to represent the key within each heap, h being the
index of a heap. Although b(v, ℓ) and bh(f(v), ℓ) may differ, for links ℓ1, ℓ2 ∈ Hf(v) we
enforce that b(v, ℓ1) − b(v, ℓ2) = bh(f(v), ℓ1) − bh(f(v), ℓ2). Let Lin

v ⊆ L be the set of
links whose farthest endpoint from the root is v and Lout

v ⊆ L be the set of links whose
closest endpoint to the root is v. Define the leaf set of T , excluding r, by ξ(T).

For each v ∈ ξ(T), we initialize each heap Hv with the links ℓ ∈ Lin
v with key

bh(v, ℓ) = c(ℓ). Therefore, we have that c(DP(v)) = Hv.min(). Moreover, we will not
create any other heaps, each non-leaf node will be assigned to a heap used by a direct
descendant. To achieve that, define a function f : V → ξ(T) ∪ {∅} which maps each
node to its assigned heap (at first, f(v) = v if v ∈ ξ(T); and f(v) = ∅, otherwise).

Consider a non-leaf node v ∈ V . Since nodes are processed in reverse topological
order, all descendant nodes will have been processed when solving for v. Let u ∈ N+(v)
and ℓ ∈ Hf(u) ∩ Lv. The cost change of using ℓ to solve the recurrence for v compared to
u is given by

∆b(v, ℓ) := b(v, ℓ)− b(u, ℓ) = c(DP(N+(v)))− c(DP(u)),

since Rv,ℓ − Ru,ℓ = N+(v) − u. We avoid updating the cost and copying each link in
Lv to prevent an O(|V ||L|) algorithm. Instead, to improve efficiency, we adopt a strategy
commonly denoted by small to large, inspired by the analysis of the disjoint union sets
structure (see Chapter 21 of [Cormen et al. 2009]). As the cost change of the links is
uniform within each heap, we introduce a reduced cost rc for each node so that b(v, ℓ) =
bh(f(v), ℓ) + rc(v). For a leaf node v ∈ ξ(T), set rc(v) = 0. We build Hf(v) as follows:

i) Let u∗ ∈ N+(v) be the direct descendant of v associated with the largest heap. Assign
f(v) = f(u∗). Define the reduced cost of v as

rc(v) := rc(u∗) + c(DP(N+(v)))− c(DP(u∗)),

which saves us from updating costs of links from Hf(u∗) (small to large step).
1A Fibonacci heap supports the following operations. H.insert() insert an element in O(1) time,

H.min() returns the value of the minimum key in O(1) time, H.remove() removes an arbitrary element
in O(log |H|) time, and traverse all elements in O(|H|) time.

ii) For u ∈ N+(v) − u∗ and ℓ ∈ Hf(u), update ℓ’s key to move it from Hf(u) to Hf(v).
The change of the key assigned to ℓ is given by

∆bh(v, ℓ) := ∆b(v, ℓ) + rc(u)− rc(v) = rc(u)− rc(u∗)− c(DP(u)) + c(DP(u∗)).

iii) Insert the links ℓ ∈ Lin
v in Hf(v) with key bh(f(v), ℓ) = c(ℓ)+c(DP(N+(v)))−rc(v)

and remove the links in Lout
v− from Hf(v).

Thus, we obtain that that c(DP(v)) = Hf(v).min() + rc(v) (see Algorithm 1).

Finally, RevTopologicalSort(T,r) can be implemented in linear time us-
ing a depth first search (DFS). Since computing the reduced costs and recovering the op-
timal value can be done in O(|N+(v)|) for each v ∈ V , this sums up to a total of O(|V |)
operations. Also, since a link moves to a different heap only if the size of the resulting
heap doubles, each link is moved at most O(log |L|) times, leading to a total complexity
of O(|L| log |L|) for moving the links. Hence, the algorithm has a total time complexity of
O(|V | + |L| log |L|). It is straightforward to recover the solution by saving the best links
at each stage and using a DFS to build the solution. Finally, with little effort, one can
adapt the algorithm above for the up-link edge-connectivity tree augmentation problem.

Algorithm 1: Algorithm for Up-link NC-WTAP
1. Input: An Up-link NC-WTAP instance (T = (V,E), r, L, c).
2. Output: The cost of an optimal solution.
3. rc(v)← 0 ∀v ∈ V
4. f(v)← v ∀v ∈ ξ(T)
5. for v in RevTopologicalSort(T, r) do
6. u∗ ← argmaxu∈N+(v){|Hf(u)|}
7. f(v)← f(u∗)
8. rc(v)← rc(u∗) + c(DP(N+(v)))− c(DP(u∗))
9. for u ∈ N+(v)− u∗ do

10. for ℓ ∈ Hf(u) do
11. Hf(v).insert(ℓ, bh(f(u), ℓ) + rc(u)− rc(u∗)− c(DP(u)) +

c(DP(u∗)))

12. for ℓ ∈ Lout
v− do

13. Hf(v).remove(ℓ)

14. for ℓ ∈ Lin
v do

15. Hf(v).insert(ℓ, c(ℓ) + c(DP(N+(v)))− rc(v))

16. c(DP(v))← Hf(v).min() + rc(v)

17. return c(DP(r+))

4. Conclusion

It remains open whether there exists a linear-time algorithm for Up-link NC-WTAP.
Another direction is to see whether there are applications analogous to the ones for the
Up-link edge-connectivity tree augmentation problem.

References
Adjiashvili, D. (2017). Beating approximation factor two for weighted tree augmentation

with bounded costs. In Proceedings of the 28th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, pages 2384–2399. SIAM, Philadelphia, PA.

Angelidakis, H., Hyatt-Denesik, D., and Sanità, L. (2023). Node connectivity augmenta-
tion via iterative randomized rounding. Math. Program., 199(1-2):995–1031.

Bamas, E., Drygala, M., and Svensson, O. (2022). A simple LP-based approximation
algorithm for the matching augmentation problem. In Proceedings of the 23rd Inter-
national Conference on Integer Programming and Combinatorial Optimization, IPCO
2022, volume 13265 of Lecture Notes in Comput. Sci., pages 57–69. Springer, Cham.

Cecchetto, F., Traub, V., and Zenklusen, R. (2021). Bridging the gap between tree and
connectivity augmentation: unified and stronger approaches. In Proceedings of the
53rd Annual ACM-SIGACT Symposium on Theory of Computing, STOC 2021, pages
370–383. ACM, New York.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
algorithms. MIT Press, Cambridge, MA, third edition.

Eswaran, K. P. and Tarjan, R. E. (1976). Augmentation problems. SIAM J. Comput.,
5(4):653–665.

Frederickson, G. N. and Ja’Ja’, J. (1981). Approximation algorithms for several graph
augmentation problems. SIAM J. Comput., 10(2):270–283.

Grout, Logan (2020). Augmenting trees to achieve 2-node-connectivity. Master’s thesis,
University of Waterloo.

Nutov, Z. (2021). 2-node-connectivity network design. In Approximation and online
algorithms, volume 12806 of Lecture Notes in Comput. Sci., pages 220–235. Springer,
Cham.

Traub, V. and Zenklusen, R. (2021). A better-than-2 approximation for Weighted Tree
Augmentation. In Proceedings of the 62nd Annual Symposium on Foundations of
Computer Science, FOCS 2021, pages 1–12. IEEE, Los Alamitos, CA.

Traub, V. and Zenklusen, R. (2022). Local search for weighted tree augmentation and
Steiner Tree. In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, pages 3253–3271. SIAM, Philadelphia, PA.

