3-atribuição de papéis em produto forte de grafos bipartidos e grafos cordais sem folhas*

Gustavo Morais Medeiros¹, Julliano Rosa Nascimento¹

¹Instituto de Informática – Universidade Federal de Goiás (UFG) Caixa Postal 131 – 74001-970 – Goiânia – GO – Brasil

medeiros@discente.ufg.br, jullianonascimento@ufg.br

Abstract. Let G be a simple graph and r be a positive integer. An r-role assignment is an assignment of r distinct roles to the vertices of G, such that two vertices with the same role share the same set of roles among their adjacent vertices. Determining whether a graph has an r-role assignment is \mathcal{NP} -complete for fixed $r \geq 3$, even when restricted to bipartite or chordal graphs. Motivated by previous work, we show that the strong product of two non-trivial graphs has a 3-role assignment if at least one of its factors is a bipartite graph or it is a chordal graph with no leaves.

Resumo. Seja G um grafo simples e r um inteiro positivo. Uma r-atribuição de papéis é uma atribuição de r papéis distintos aos vértices de G, tal que, dois vértices com o mesmo papel têm o mesmo conjunto de papéis nos vértices adjacentes. Determinar se um grafo possui uma r-atribuição de papéis é $N\mathcal{P}$ -completo para $r \geq 3$ fixo, mesmo restrito a grafos bipartidos ou cordais. Motivados por trabalhos anteriores, mostramos que o produto forte entre dois grafos conexos não triviais possui uma 3-atribuição de papéis se ao menos um de seus fatores for um grafo bipartido ou for um grafo cordal sem folhas.

1. Introdução

Sejam G um grafo simples e R um grafo possivelmente com laços. Uma R-atribuição de papéis para G é uma função de homomorfismo localmente sobrejetor de G para R, de modo que a relação de vizinhança é mantida, tal que todos os papéis vizinhos à imagem de um vértice aparecem como papéis na vizinhança do vértice. Tal condição pode ser expressa através da função $p:V(G)\to V(R)$, em que para todo q:V(G) temse $p(N_G(q))=N_R(p(q))$. Dizemos que q:V(G) de papéis de papéis de q:V(G) temse q:V(G). Assim, se q:V(G) tem uma q:V(G) de papéis. Comumente, chamamos os véritces de q:V(G) um exemplo de q:V(G) de papéis segue na Figura q:V(G) com grafo de papéis q:V(G) evidenciado na Figura q:V(G). Vale ressaltar que o problema de determinar uma q:V(G) exista uma q:V(G) em problema não monótono, ou seja, pode ser que para determinado grafo exista uma q:V(G) atribuição de papéis e não exista uma q:V(G) em grafos de interações e papéis desempenhados por indivíduos em redes sociais [Aleksandar e Fred 1999].

Destacamos alguns resultados conhecidos sobre o problema de determinar uma r-atribuição de papéis para um grafo G. Em grafos cordais, o problema é solucionável

^{*}Trabalho realizado com apoio de Bolsa PIP-UFG.

em tempo linear para r=2, mas \mathcal{NP} -completo para $r\geq 3$ [van 't Hof et al. 2010]. Para planares e grafos com grau máximo 3, o problema é \mathcal{NP} -completo para $r\geq 2$ [Purcell e Rombach 2015, Purcell e Rombach 2021]. Em grafos bipartidos, o problema é \mathcal{NP} -completo para $r\geq 3$, por outro lado, constante para r=2 [Pandey 2019]. Em grafos split, é trivial para r=2, linear para r=3 e \mathcal{NP} -completo para $r\geq 4$ [Dourado 2016]. Há resultados de atribuição de papéis para alguns produtos de grafos, como: Cartesiano [Castonguay et al. 2022, Castonguay et al. 2023, Zhao et al. 2010], direto [Fiala e Paulusma 2005], lexicográfico [Zhao et al. 2010]. Focamos no produto forte.

Dados dois grafos G e H, o produto forte de G e H, denotado por $G \boxtimes H$, é definido como um grafo com conjunto de vértices $V(G \boxtimes H) = \{(g,h) \mid g \in V(G) \text{ e } h \in V(H)\}$ e conjunto de arestas $E(G \boxtimes H) = \{(g,h)(g',h') \mid g=g',hh' \in E(H) \text{ ou } gg' \in E(G),h=h'\} \cup \{(g,h)(g',h') \mid gg' \in E(G) \text{ e } hh' \in E(H)\}$ [Hammack et al. 2011]. Na Figura 1(a), exemplificamos o produto forte $P_4 \boxtimes K_2$.

Em [Medeiros e Nascimento 2023] é demonstrado que o produto forte entre um grafo não trivial e um grafo completo sempre possui 2- e 3-atribuição de papéis. Em continuidade, neste artigo mostramos que $G \boxtimes H$ possui 3-atribuição de papéis quando G ou H é bipartido, e quando G ou H é um grafo cordal sem folhas. Nossos resultados consideram G e H conexos e seguem na Seção 3. Antes, apresentamos na Seção 2 alguns conceitos e notações utilizados.

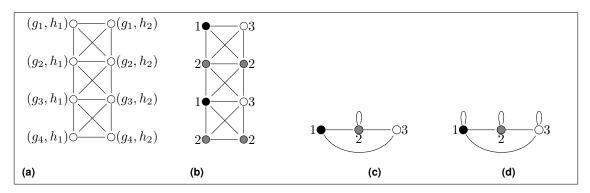


Figura 1. (a) Grafo $P_4 \boxtimes K_2$, com $V(P_4) = \{g_1, \dots, g_4\}$ e $V(K_2) = \{h_1, h_2\}$. (b) Uma R_1 -atribuição para o grafo $P_4 \boxtimes K_2$. (c) Grafo R_1 . (d) Grafo R_2 .

2. Conceitos Básicos

Para conceitos básicos em grafos nos referimos a [Bondy e Murty 2008, Diestel 2000]. Um grafo é chamado trivial se possui um único vértice e $n\~ao$ trivial caso contrário. Uma clique (resp. conjunto independente) de um grafo G é um subconjunto de vértices que tomados dois a dois são adjacentes (resp. $n\~ao$ adjacentes). Um conjunto independente I de um grafo G é maximal se todo vértice $v \in V(G) \setminus I$ tem um vizinho em I. Um grafo G é bipartido, se existe uma partição de $V(G) = A \cup B$, tal que A e B são conjuntos independentes; (A, B) é chamada $bipartiç\~ao$ de G. Um grafo é dito cordal se $n\~ao$ contém ciclos induzidos com G0 u mais vértices.

A distância entre dois vértices u e v, denotada por dist(u,v), é o comprimento do caminho mais curto entre u e v. Um grafo G é conexo se quaisquer dois de seus vértices são ligados por um caminho em G, e desconexo caso contrário. Uma árvore é um grafo

conexo sem ciclos. Seja T uma árvore enraizada em $r \in V(T)$. Definimos a altura de T, denotada por h(T), como o comprimento do caminho mais longo entre r e uma folha $f \in V(T)$. Um vértice $v \in V(T)$ é dito interno se v não é folha em T. A excentricidade de um vértice v é a distância máxima de v a qualquer outro vértice do grafo. Um vértice v é dito articulação se $G \setminus v$ é desconexo.

Sejam G e H dois grafos com $V(G) = \{g_1, \ldots, g_m\}$ e $V(H) = \{h_1, \ldots, h_n\}$. Os grafos G e H são ditos fatores de $G \boxtimes H$. Chamamos de linha \mathcal{L}_i , $i \in \{1, \ldots, m\}$, o conjunto de vértices $\{(g_i, h_k) \mid 1 \leq k \leq n\}$ de $V(G \boxtimes H)$, e de coluna \mathcal{C}_j , $j \in \{1, \ldots, n\}$, o conjunto de vértices $\{(g_k, v_j) \mid 1 \leq k \leq m\}$ de $V(G \boxtimes H)$.

3. Resultados

Para 3-atribuição de papéis temos alguns possíveis grafos R. Nossos resultados usam explicitamente R_1 e R_2 representados nas Figuras 1(c) e 1(d), respectivamente. Mostramos no Teorema 1 que o produto forte entre dois grafos não triviais possui uma 3-atribuição de papéis se ao menos um de seus fatores for um grafo bipartido.

Teorema 1. Sejam G e H grafos conexos não triviais. Se G ou H é bipartido, então $G \boxtimes H$ possui uma R_1 -atribuição de papéis.

Demonstração. Sejam G e H grafos conexos não triviais. Como o produto forte é comutativo, podemos assumir que H é bipartido. Considere (A,B) uma bipartição de V(H).

Seja I um conjunto independente maximal de G e denote $V(G) = \{g_1, \ldots, g_m\}$ e $V(H) = \{h_1, \ldots, h_n\}$. Para todo $i \in \{1, \ldots, m\}$ e para todo $j \in \{1, \ldots, n\}$, definimos $p: V(G \boxtimes H) \to \{1, 2, 3\}$ como:

$$p((g_i, h_j)) = \begin{cases} 1, & \text{se } g_i \in I \text{ e } h_j \in A; \\ 3, & \text{se } g_i \in I \text{ e } h_j \in B; \\ 2, & \text{caso contrário.} \end{cases}$$
(1.1)

Para mostrarmos que p é uma R_1 -atribuição de papéis, para todo $v \in V(G \boxtimes H)$, verificamos que: se p(v) = 1, então $p(N_{G \boxtimes H}(v)) = \{2,3\}$; se p(v) = 2, então $p(N_{G \boxtimes H}(v)) = \{1,2,3\}$; se p(v) = 3, então $p(N_{G \boxtimes H}(v)) = \{1,2\}$.

Primeiro, seja v um vértice com papel 1, isto é $v=(g_i,h_j)\in I\times A$. Dada a definição de p, temos que $p(\mathcal{L}_i)=\{1,3\}$ e $p(\mathcal{C}_j)=\{1,2\}$. Como H é bipartido conexo não trivial, temos que v é adjacente a ao menos um vértice de papel 3 e não é adjacente a qualquer vértice de papel 1 na linha \mathcal{L}_i . Além disso, como I é um conjunto independente maximal de G, temos que v é adjacente a ao menos um vértice de papel 2 e não é adjacente a qualquer vértices de papel 1 na coluna \mathcal{C}_j . Por fim, para todo $u\in N_{G\boxtimes H}(v)\setminus (\mathcal{L}_i\cup \mathcal{C}_j)$, a definição de p implica que p(u)=2. Logo $p(N_{G\boxtimes H}(v))=\{2,3\}$. De forma similar, para $v=(g_i,h_j)\in I\times B$, isto é, p(v)=3, a definição de p implica que $p(\mathcal{L}_i)=\{1,3\}$, $p(\mathcal{C}_j)=\{2,3\}$ e para todo $u\in N_{G\boxtimes H}(v)\setminus (\mathcal{L}_i\cup \mathcal{C}_j)$, p(u)=2. Assim, a conclusão $p(N_{G\boxtimes H}(v))=\{1,2\}$ é análoga.

Agora, definimos $I' = V(G) \setminus I$. Considere $v = (g_i, h_j) \in (I' \times A)$, isto é, p(v) = 2. A prova para o caso $v = (g_i, h_j) \in (I' \times B)$ é similar. Por (1.3) sabemos que $p(\mathcal{L}_i) = \{2\}$, logo $2 \in p(N_{G\boxtimes H}(v))$ visto que H é conexo e não trivial. Como I é um conjunto independente maximal e $g_i \notin I$, temos que existe $g_{i'} \in I$ tal que $g_i g_{i'} \in E(G)$.

Isso implica que $v = (g_i, h_j)$ é adjacente a $u = (g_{i'}, h_j)$ com p(u) = 1. Além do mais, como H é bipartido conexo não trivial, existe $h_{j'} \in B$ tal que $h_j h_{j'} \in E(H)$, logo $v = (g_i, h_j)$ é adjacente a $w = (g_{i'}, h_{j'})$ com p(w) = 3. Logo, $p(N_{G \boxtimes H}(v)) = \{1, 2, 3\}$. \square

Nosso próximo resultado trata de grafos cordais conexos sem folhas.

Teorema 2. Sejam G e H grafos conexos não triviais. Se G ou H é cordal sem folhas, então $G \boxtimes H$ possui uma R_2 -atribuição de papéis.

Demonstração. Como o produto forte é comutativo, assumimos que H é cordal sem folhas. Seja r um vértice de excentricidade máxima em H. Sabemos que r não é um vértice de articulação. Como H é cordal sem folhas, r está em uma clique, digamos C, de ordem pelo menos 3. Vamos usar uma árvore de busca para definir uma atribuição de papéis.

Seja T uma árvore de busca em profundidade de H, enraizada em r de tal forma que todo vértice de C seja visitado antes que os vértices de $V(H) \setminus C$. Note que $h(T) \geq 3$, já que $|C| \geq 3$. Definimos uma rotulação $l: V(T) \to \{1,2,3\}$ como $l(v) = (dist(r,v) \mod 3) + 1$, para cada $v \in V(T)$. Um exemplo de rotulação l segue na Figura 2(a).

Usamos l para definir uma função $p:V(G\boxtimes H)\to\{1,2,3\}$ dada por p((u,v))=l(v), para todo $u\in V(G)$ e todo $v\in V(H)=V(T)$. Mostramos que p é uma R_2 -atribuição de papéis. Veja que p é sobrejetora, pois $h(T)\geq 3$ e $l(C)=\{1,2,3\}$.

Primeiramente, como G é conexo não trivial, temos que para todo $u \in V(G)$, existe $u' \in V(G)$ tal que $uu' \in E(G)$. Da definição de produto forte, temos que $uu' \in E(G)$ implica que $(u,v)(u',v) \in E(G \boxtimes H)$, para todo $v \in V(H)$. Assim, da definição de p, temos que $p((u,v)) = p((u',v)) = i \in \{1,2,3\}$ e, então, $i \in p(N_{G \boxtimes H}(u,v))$, concluindo $i \in N_R(i)$. Resta mostrar que $\{1,2,3\} \setminus \{p((u,v))\} \subseteq p(N_{G \boxtimes H}((u,v)))$, para todo $i \in \{1,2,3\}$.

Se v é um vértice interno de T e $v \neq r$, então v possui um pai x e um filho y na árvore T. Conforme a definição de l, $\{l(x), l(v), l(y)\} = \{1, 2, 3\}$, assim, a conclusão $\{1, 2, 3\} \setminus \{p((u, v))\} \subseteq p(N_{G\boxtimes H}((u, v)))$ é imediata. Então consideramos casos particulares para a raiz e para as folhas de T. Para a raiz r de T, que possui p(r) = 1, temos que $r \in C$. Como C é uma clique com pelo menos p(r) = 1, temos que p(r) = 1, tem

Seja $i \in \{1,2,3\} \setminus \{l(f),l(x),l(w)\}$. Denotamos $V(G) = \{g_1,\ldots,g_m\}$ e fixamos $g_1g_2 \in E(G)$. A função p' é uma cópia de p, exceto por atribuir a (g_1,x) o papel que falta na vizinhança de (g_1,f) , isto é, $p'((g_1,x))=i$ (A1). Logo $1,2,3 \in p'(N_{G\boxtimes H}((g_j,f)))$, para j=1,2. Além disso, fazemos $p'((g_2,x'))=p((g_2,x))$ (A2). Veja um exemplo de p' na Figura 2(b). Isso garante que $1,2,3 \in p'(N_{G\boxtimes H}((g_j,x)))$, para j=1,2, e $1,2,3 \in p'(N_{G\boxtimes H}((g_j,x')))$, para j=1,2 (como $x'f \notin E(H)$, $pai_T(x')$ existe). Para $s,s',t,t'\in\{1,\ldots,m\}$, o Passo A1 é repetido para (g_s,x) tal que $g_s\in N_G(u_{s'})$ e $(g_{s'},x')$ tenha recebido a regra A2 e, similarmente, Passo A2 é repetido para (g_t,x') tal que $g_t\in N_G(u_{t'})$ e $(u_{t'},x)$ tenha recebido a regra A1. Isso completa a descrição de p' e é possível verificar que p' é uma R_2 -atribuição de papéis.

A Figura 2(a) ilustra um grafo cordal sem folhas H_1 e uma rotulação l para uma de suas árvores de busca em profundidade T (arestas em negrito). A Figura 2(b) apresenta uma R_2 -atribuição de papéis para $K_2 \boxtimes H_2$, onde H_2 é um grafo cordal sem folhas, com uma árvore de busca em profundidade cuja folha f não possui um vizinho x com l(x) = 2.

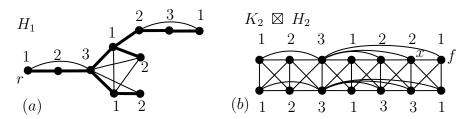


Figura 2. (a) Grafo cordal sem folhas H_1 . (b) Produto forte $K_2 \boxtimes H_2$.

Referências

- Aleksandar, P. e Fred, R. (1999). The role assignment model nearly fits most social networks. *Mathematical Social Sciences*, 41(3):275–293.
- Bondy, J. A. e Murty, U. S. R. (2008). *Graph theory*. Springer Publishing Company, Incorporated.
- Castonguay, D., Dias, E. S., Mesquita, F. N., e Nascimento, J. R. (2022). Computing some role assignments of cartesian product of graphs. *RAIRO-Oper. Res.*, 56(1):115–121.
- Castonguay, D., Dias, E. S., Mesquita, F. N., e Nascimento, J. R. (2023). Computing role assignments of cartesian product of graphs. *RAIRO-Oper. Res.*, 57(3):1075–1086.
- Diestel, R. (2000). Graph theory. New York, USA, Springer-Verlag.
- Dourado, M. C. (2016). Computing role assignments of split graphs. *Theoretical Computer Science*, 635:74–84.
- Fiala, J. e Paulusma, D. (2005). A complete complexity classification of the role assignment problem. *Theoretical computer science*, 349(1):67–81.
- Hammack, R. H., Imrich, W., e Klavžar, S. (2011). *Handbook of product graphs*, volume 2. CRC press Boca Raton.
- Medeiros, G. M. e Nascimento, J. R. (2023). O produto forte de um grafo não trivial e o grafo completo possui 2-e 3-atribuição de papéis. In *Anais da XI Escola Regional de Informática de Goiás*. SBC.
- Pandey, S. (2019). *Role colouring hereditary classes of graphs*. PhD thesis, Indian Institute of Science Education and Research Pune.
- Purcell, C. e Rombach, P. (2015). On the complexity of role colouring planar graphs, trees and cographs. *Journal of Discrete Algorithms*, 35:1–8.
- Purcell, C. e Rombach, P. (2021). Role colouring graphs in hereditary classes. *Theoretical Computer Science*, 876:12–24.
- van 't Hof, P., Paulusma, D., e van Rooij, J. M. (2010). Computing role assignments of chordal graphs. *Theoretical Computer Science*, 411(40):3601–3613.
- Zhao, Y.-q., Feng, W.-l., Li, H., e Yang, J.-m. (2010). *k*-role assignments under some graph operations. *Journal of Hebei University of Science and Technology*, page 06.