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Abstract. AVD-k-total coloring of a simple graph G is a mapping π : V (G) ∪
E(G) → {1, . . . , k} such that: adjacent or incident elements x, y ∈ V (G) ∪
E(G), π(x) ̸= π(y); and for each pair of adjacent vertices x, y ∈ V (G),
sets {π(x)} ∪ {π(xv) | xv ∈ E(G) and v ∈ V (G)} and {π(y)} ∪ {π(yv) |
yv ∈ E(G) and v ∈ V (G)} are distinct. The AVD-total chromatic num-
ber, denoted by χ′′

a(G) is the smallest k for which G admits an AVD-k-total-
coloring. [Zhang et al. 2005] conjectured that any graph G has χ′′

a(G) ≤ ∆+3.
[Hulgan 2009] conjectured that any subcubic graph G has χ′′

a(G) ≤ 5. In this
article, we proved that all cubic circulant graph has χ′′

a(C2n(d, n))) = 5, being
positive evidence to Hulgan’s conjecture.

1. Introduction
Let G = (V,E) be a simple connected graph and ∆ be the maximum degree of G. A
k-total coloring of G is an assignment of k colors to the vertices and edges of G so that
adjacent or incident elements have different colors. The total chromatic number of G,
denoted by χ′′(G), is the smallest k for which G has a k-total coloring. Clearly, χ′′(G) ≥
∆+1. The Total Coloring Conjecture (TCC) states that χ′′(G) ≤ ∆+2, for every simple
graph [Behzad 1965, Vizing 1964]. Graphs with χ′′(G) = ∆ + 1 are called Type 1, and
graphs with χ′′(G) = ∆ + 2 are called Type 2. It is known that determining the total
chromatic number is an NP-complete problem [McDiarmid and Sánchez-Arroyo 1994].

Let π be a k-total coloring of G and let Cπ(u) := {π(u)} ∪ {π(uv) | uv ∈
E(G), v ∈ V (G)} be the set of colors that occurs in a vertex u ∈ V (G). If it is
clear from the context that π is a k-total coloring of G, then Cπ(u) is written simply
as C(u). We denote by C(u) the set of colors of {1, . . . , k} that do not occur in vertex
u ∈ V (G). Two vertices u and v are distinguishable when C(u) ̸= C(v). If this property
is true for every pair of adjacent vertices, then π is an Adjacent-Vertex-Distinguishing-
k-Total-Coloring, or simply AVD-k-total coloring. The AVD-total chromatic number of
G, denoted by χ′′

a(G), is the smallest k for which G admits an AVD-k-total coloring.
[Zhang et al. 2005] introduced the AVD-total coloring problem. The authors determined
the AVD-total chromatic number for some families of simple graphs and noted that all of
them admit an AVD-total coloring with at most ∆(G) + 3 colors. Based on these results,
the authors posed the Conjecture 1.1, the AVD-Total Coloring Conjecture (AVD-TCC).
Conjecture 1.1 ([Zhang et al. 2005]). If G is a simple graph, then χ′′

a(G) ≤ ∆(G) + 3.

If AVD-TCC holds, we can classify any graph between three sets according to the
AVD-total chromatic number. If χ′′

a(G) = ∆(G) + 1, then G is called AVD-Type 1. If



χ′′
a(G) = ∆(G)+ 2, then G is called AVD-Type 2. If χ′′

a(G) = ∆(G)+ 3, then G is called
AVD-Type 3. It is straightforward that any AVD-Type 1 graph is Type 1 graph. However,
the reverse is not true. For instance, the complete graph Kn with n odd, is Type 1 and
AVD-Type 3 [Yap 1996, Chen and Zhang 2008].

Since the proposal of this conjecture, several studies have been conducted.
[Chen 2008] proved the AVD-TCC to subcubic graphs. [Chen and Guo 2009], de-
termined the AVD-total chromatic number of hypergraphs Qn. In the same year,
[Hulgan 2009] presented concise proofs of AVD-Total chromatic number of cycles, com-
plete graphs, and subcubic graphs. Furthermore, it was questioned whether the upper
bound for the AVD-total chromatic number of subcubic graphs is sharp. Thus, Conjec-
ture 1.2 was proposed.
Conjecture 1.2 ([Hulgan 2009, Hulgan 2010]). If G is a simple graph with ∆(G) = 3,
then χ′′

a(G) ≤ 5.

Since then, recent studies have been conducted involving some other graph
classes to investigate the Conjecture 1.1, such as equipartite graphs, split graphs, corona
graphs, and 4-regular graphs [Luiz et al. 2015, Papaioannou and Raftopoulou 2014,
Verma and Panda 2022, Verma et al. 2022]. To investigate the Conjecture 1.2, we high-
light the work conducted by [Luiz et al. 2017], that proved that the Conjecture 1.2 holds
for some infinite families of subcubic graphs, where vertices with a maximum degree
are not adjacent, and for infinite families of Snarks 1 such as flower snarks, generalized
Blanuša snarks, LP1-snarks.

A circulant graph Cn(d1, d2, · · · , dℓ) with integers numbers 1 ≤ di ≤ ⌊n/2⌋,
where 1 ≤ i ≤ ℓ and ℓ ≤ ⌊n/2⌋, has vertex set V = {v0, v1, · · · , vn−1} and edge
set E =

⋃ℓ
i=1Ei, where Ei = {ei0, ei1, · · · , ein−1} and eij = vjvj+di (if n is even and

dℓ = n/2, then Eℓ = {eℓ0, eℓ1, . . . , eℓn−2
2

}), where the indexes of the vertices are considered
modulo n. An edge of Ei has length di. Some classical circulant graphs, such as the cycle
graphs Cn ≃ Cn(1), the complete graphs Kn ≃ Cn(1, 2, ..., ⌊n/2⌋) have their AVD-total
chromatic number determined by [Zhang et al. 2005]. Some partial results are known
to power of cycle graphs, the infinite family of circulant graphs Ck

n := Cn(1, 2, ..., k).
[Alvarado et al. 2019] proved that C2

n and Ck
n with n ≡ 0 mod (k + 1) are AVD-Type 2.

It is well known that the connected cubic circulant graph is written as C2n(1, n),
which is known as Möbius ladder or C2n(2, n) and n is odd in this case, which is known
as circular ladder [Hackmann and Kemnitz 2004]. It was proved that the circular ladder
graphs are AVD-Type 2 [Zhu et al. 2016].

In this paper, we proved that all cubic circulant graphs C2n(d, n) are AVD-Type 2,
i.e., χ′′

a(C2n(d, n)) = 5, which is positive evidence to Conjecture 1.2.

2. Main result
In this section, we prove that C2n(d, n) is AVD-Type 2 (see Theorem 2.1). To establish it,
we use two auxiliary properties to apply to the case where the circulant graph is bipartite.
Proposition 2.1 ([Zhang et al. 2005]). Let G be a simple graph. If G has two adjacent
vertices of maximum degree, then χa

′′(G) ≥ ∆(G) + 2. On the other hand, if G does not
have adjacent vertices of maximum degree, then χa

′′(G) ≥ ∆(G) + 1.

1Snarks are bridgeless cubic graphs with chromatic index equal to 4.



Proposition 2.2 ([Chen and Zhang 2008]). If G is a bipartite graph, then χa
′′(G) ≤

∆(G) + 2.

The following lemmas characterize bipartite circulant graphs (Lemma 2.1) and
cubic circulant graphs (Lemma 2.2).
Lemma 2.1 ([Heuberger 2003]). The circulant graph Cn(d1, d2, . . . , dℓ) is bipartite if and
only if n is even and di is odd, for all i ∈ {1, 2, . . . , ℓ}.
Lemma 2.2 ([Hackmann and Kemnitz 2004]). If l = gcd(d, n) such that d = lm and
n = lp, then C2n(d, n) is isomorphic either to l copies of C2p(1, p) if m is odd or to l
copies of C2p(2, p) if m is even.
Theorem 2.1. Every cubic circulant graph C2n(d, n) is AVD-Type 2.

Proof. Let G be a cubic circulant graph, i.e, G ≃ C2n(d, n). From Lemma 2.2, G is
isomorphic to l = gcd(d, n) copies of C2n(1, n) or l copies of G ≃ C2n(2, n). So, it is
sufficient to prove that a connected component of G is AVD-Type 2 to guarantee that G is
AVD-Type 2. Then G is either C2n(1, n) or C2n(2, n).

1. Suppose that G ≃ C2n(1, n). From Proposition 2.1, χa
′′(G) ≥ 5.

(a) If n is odd, from Lemma 2.1, G is bipartite and χ′′
a(G) ≤ 5. Therefore,

χ′′
a(G) = 5.

(b) If n is even, then we construct an AVD-5-total coloring π of G as on Fig-
ure 1:

• to the vertices vi and edges vivi+1 with i ∈ {0, 1, . . . , n− 1}:

π(vi) =

{
1, if i is even;
2, if i is odd.

π(vivi+1) =

{
3, if i is even;
4, if i is odd.

(1)

• to the vertices vi and edges vivi+1 with i ∈ {n, n+1, . . . , 2n− 1}:

π(vi) =

{
3, if i is even;
4, if i is odd.

π(vivi+1) =

{
1, if i is even;
2, if i is odd.

(2)

• to the edges vivi+n for all i ∈ {0, 1, . . . , n}:

π(vivi+n) = 5 (3)

Therefore, we will display that π is a 5-total coloring of G. Notice that
(3) is a perfect matching M of G. So we use the colors 1, 2, 3, and 4
to the vertices and edges of G[V \ M ]. Moreover, G[V \ M ] is an even
cycle with size 2n. We split it cycle on paths P1 := (v0v1 . . . vn−1) and
P2 := (vnvn+1 . . . v2n−1) and edges vn−1vn and v2n−1v0.
From (1), we alternate to the path P1 the colors 1 and 2 to the vertices
and 3 and 4 to the edges; and from (2), we alternate to the path P2 the
colors 3 and 4 to the vertices and 1 and 2 to the edges. Since the adjacent
vertices of P1 are alternate with colors 1 and 2, adjacent vertices vi and
vi+1 have different colors. Futhermore, since the edges are alternate with
colors 3 and 4, adjacent edges vivi+1 and vi+1vi+2 have different colors.
Also, vi+1 have different colors of vi and vi+2. The same argument can be
made to the path P2. Since π(vi) = 1 and π(vi+n) = 3 if i is even with



Figure 1. A scheme of the AVD-5-total coloring π of C2n(1, n). The elements in
blue denote the elements in the path P1 and the elements in red denote the
elements in the path P2. The set of edges in green is a perfect matching.

i ∈ {0, 1, . . . , n − 1}; and π(vi) = 2 and π(vi+n) = 4 if i is odd with
i ∈ {0, 1, . . . , n − 1}. Therefore, π(vi) ̸= π(vi+n). Finally, we proved
that π is an AVD-5-total coloring of G. Notice that if a vertex vi in P1 has
1 ∈ C(vi), then 1 ̸∈ C(vi+1) for i ∈ {0, 1, . . . , n− 2}. For i = n− 1, 2 ∈
C(vi) and 2 ̸∈ C(vi+1), then C(vi) ̸= C(vi+1) for i ∈ {0, 1, . . . , n − 1}.
The same occurs to the path P2, if 3 ∈ C(vi), then 3 ̸∈ C(vi+1), for
i ∈ {n, n + 1, . . . , 2n − 2}. For i = 2n − 1, 4 ∈ C(vi) and 4 ̸∈ C(vi+1)
and so C(vi) ̸= C(vi+1), for i ∈ {n, n+1, . . . , 2n− 2}. Finally for i = 0,
2 ∈ C(vi) and 2 ̸∈ C(vi+n); for i ∈ {1, 2, . . . , n − 2}, 3 ∈ C(vi) and
3 ̸∈ C(vi+n) if i is odd, and 4 ∈ C(vi) and 4 ̸∈ C(vi+n) if i is even.
Hence, any pair of adjacent vertices u, v ∈ V (G), has C(u) ̸= C(v), and
π is an AVD-5-total coloring of G.

2. Suppose that G ≃ C2n(2, n). We remark that G is the circular ladder, a generalized
Petersen graph. From [Zhu et al. 2016], C2n(2, n) is AVD-Type 2.

Hence, G is AVD-Type 2 graph.
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