On the AVD-total chromatic number of circulant graphs

Matheus Adauto ${ }^{1}$, Mauro Nigro ${ }^{2}$
${ }^{1}$ Programa de Engenharia de Sistemas e Computação Universidade Federal do Rio de Janeiro - Rio de Janeiro, RJ - Brazil
${ }^{2}$ Instituto de Matemática e Estatística
Universidade do Estado do Rio de Janeiro - Rio de Janeiro, RJ - Brazil

adauto@cos.ufrj.br, mauro.nigro@ime.uerj.br

Abstract

AVD-k-total coloring of a simple graph G is a mapping $\pi: V(G) \cup$ $E(G) \rightarrow\{1, \ldots, k\}$ such that: adjacent or incident elements $x, y \in V(G) \cup$ $E(G), \pi(x) \neq \pi(y)$; and for each pair of adjacent vertices $x, y \in V(G)$, sets $\{\pi(x)\} \cup\{\pi(x v) \mid x v \in E(G)$ and $v \in V(G)\}$ and $\{\pi(y)\} \cup\{\pi(y v) \mid$ $y v \in E(G)$ and $v \in V(G)\}$ are distinct. The AVD-total chromatic number, denoted by $\chi_{a}^{\prime \prime}(G)$ is the smallest k for which G admits an AVD- k-totalcoloring. [Zhang et al. 2005] conjectured that any graph G has $\chi_{a}^{\prime \prime}(G) \leq \Delta+3$. [Hulgan 2009] conjectured that any subcubic graph G has $\chi_{a}^{\prime \prime}(G) \leq 5$. In this article, we proved that all cubic circulant graph has $\left.\chi_{a}^{\prime \prime}\left(C_{2 n}(d, n)\right)\right)=5$, being positive evidence to Hulgan's conjecture.

1. Introduction

Let $G=(V, E)$ be a simple connected graph and Δ be the maximum degree of G. A k-total coloring of G is an assignment of k colors to the vertices and edges of G so that adjacent or incident elements have different colors. The total chromatic number of G, denoted by $\chi^{\prime \prime}(G)$, is the smallest k for which G has a k-total coloring. Clearly, $\chi^{\prime \prime}(G) \geq$ $\Delta+1$. The Total Coloring Conjecture (TCC) states that $\chi^{\prime \prime}(G) \leq \Delta+2$, for every simple graph [Behzad 1965, Vizing 1964]. Graphs with $\chi^{\prime \prime}(G)=\Delta+1$ are called Type 1, and graphs with $\chi^{\prime \prime}(G)=\Delta+2$ are called Type 2. It is known that determining the total chromatic number is an NP-complete problem [McDiarmid and Sánchez-Arroyo 1994].

Let π be a k-total coloring of G and let $C_{\pi}(u):=\{\pi(u)\} \cup\{\pi(u v) \mid u v \in$ $E(G), v \in V(G)\}$ be the set of colors that occurs in a vertex $u \in V(G)$. If it is clear from the context that π is a k-total coloring of G, then $C_{\pi}(u)$ is written simply as $C(u)$. We denote by $\bar{C}(u)$ the set of colors of $\{1, \ldots, k\}$ that do not occur in vertex $u \in V(G)$. Two vertices u and v are distinguishable when $C(u) \neq C(v)$. If this property is true for every pair of adjacent vertices, then π is an Adjacent-Vertex-Distinguishing-k-Total-Coloring, or simply AVD-k-total coloring. The AVD-total chromatic number of G, denoted by $\chi_{a}^{\prime \prime}(G)$, is the smallest k for which G admits an AVD- k-total coloring. [Zhang et al. 2005] introduced the AVD-total coloring problem. The authors determined the AVD-total chromatic number for some families of simple graphs and noted that all of them admit an AVD-total coloring with at most $\Delta(G)+3$ colors. Based on these results, the authors posed the Conjecture 1.1, the AVD-Total Coloring Conjecture (AVD-TCC).
Conjecture 1.1 ([Zhang et al. 2005]). If G is a simple graph, then $\chi_{a}^{\prime \prime}(G) \leq \Delta(G)+3$.
If AVD-TCC holds, we can classify any graph between three sets according to the AVD-total chromatic number. If $\chi_{a}^{\prime \prime}(G)=\Delta(G)+1$, then G is called AVD-Type 1. If
$\chi_{a}^{\prime \prime}(G)=\Delta(G)+2$, then G is called AVD-Type 2. If $\chi_{a}^{\prime \prime}(G)=\Delta(G)+3$, then G is called AVD-Type 3. It is straightforward that any AVD-Type 1 graph is Type 1 graph. However, the reverse is not true. For instance, the complete graph K_{n} with n odd, is Type 1 and AVD-Type 3 [Yap 1996, Chen and Zhang 2008].

Since the proposal of this conjecture, several studies have been conducted. [Chen 2008] proved the AVD-TCC to subcubic graphs. [Chen and Guo 2009], determined the AVD-total chromatic number of hypergraphs Q_{n}. In the same year, [Hulgan 2009] presented concise proofs of AVD-Total chromatic number of cycles, complete graphs, and subcubic graphs. Furthermore, it was questioned whether the upper bound for the AVD-total chromatic number of subcubic graphs is sharp. Thus, Conjecture 1.2 was proposed.
Conjecture 1.2 ([Hulgan 2009, Hulgan 2010]). If G is a simple graph with $\Delta(G)=3$, then $\chi_{a}^{\prime \prime}(G) \leq 5$.

Since then, recent studies have been conducted involving some other graph classes to investigate the Conjecture 1.1, such as equipartite graphs, split graphs, corona graphs, and 4-regular graphs [Luiz et al. 2015, Papaioannou and Raftopoulou 2014, Verma and Panda 2022, Verma et al. 2022]. To investigate the Conjecture 1.2, we highlight the work conducted by [Luiz et al. 2017], that proved that the Conjecture 1.2 holds for some infinite families of subcubic graphs, where vertices with a maximum degree are not adjacent, and for infinite families of Snarks ${ }^{1}$ such as flower snarks, generalized Blanuša snarks, $L P_{1}$-snarks.

A circulant graph $C_{n}\left(d_{1}, d_{2}, \cdots, d_{\ell}\right)$ with integers numbers $1 \leq d_{i} \leq\lfloor n / 2\rfloor$, where $1 \leq i \leq \ell$ and $\ell \leq\lfloor n / 2\rfloor$, has vertex set $V=\left\{v_{0}, v_{1}, \cdots, v_{n-1}\right\}$ and edge set $E=\bigcup_{i=1}^{\ell} E_{i}$, where $E_{i}=\left\{e_{0}^{i}, e_{1}^{i}, \cdots, e_{n-1}^{i}\right\}$ and $e_{j}^{i}=v_{j} v_{j+d_{i}}$ (if n is even and $d_{\ell}=n / 2$, then $E_{\ell}=\left\{e_{0}^{\ell}, e_{1}^{\ell}, \ldots, e_{\frac{n-2}{2}}^{\ell}\right\}$), where the indexes of the vertices are considered modulo n. An edge of E_{i} has length d_{i}. Some classical circulant graphs, such as the cycle graphs $C_{n} \simeq C_{n}(1)$, the complete graphs $K_{n} \simeq C_{n}(1,2, \ldots,\lfloor n / 2\rfloor)$ have their AVD-total chromatic number determined by [Zhang et al. 2005]. Some partial results are known to power of cycle graphs, the infinite family of circulant graphs $C_{n}^{k}:=C_{n}(1,2, \ldots, k)$. [Alvarado et al. 2019] proved that C_{n}^{2} and C_{n}^{k} with $n \equiv 0 \bmod (k+1)$ are AVD-Type 2.

It is well known that the connected cubic circulant graph is written as $C_{2 n}(1, n)$, which is known as Möbius ladder or $C_{2 n}(2, n)$ and n is odd in this case, which is known as circular ladder [Hackmann and Kemnitz 2004]. It was proved that the circular ladder graphs are AVD-Type 2 [Zhu et al. 2016].

In this paper, we proved that all cubic circulant graphs $C_{2 n}(d, n)$ are AVD-Type 2, i.e., $\chi_{a}^{\prime \prime}\left(C_{2 n}(d, n)\right)=5$, which is positive evidence to Conjecture 1.2.

2. Main result

In this section, we prove that $C_{2 n}(d, n)$ is $A V D$-Type 2 (see Theorem 2.1). To establish it, we use two auxiliary properties to apply to the case where the circulant graph is bipartite.
Proposition 2.1 ([Zhang et al. 2005]). Let G be a simple graph. If G has two adjacent vertices of maximum degree, then $\chi_{a}{ }^{\prime \prime}(G) \geq \Delta(G)+2$. On the other hand, if G does not have adjacent vertices of maximum degree, then $\chi_{a}{ }^{\prime \prime}(G) \geq \Delta(G)+1$.

[^0]Proposition 2.2 ([Chen and Zhang 2008]). If G is a bipartite graph, then $\chi_{a}{ }^{\prime \prime}(G) \leq$ $\Delta(G)+2$.

The following lemmas characterize bipartite circulant graphs (Lemma 2.1) and cubic circulant graphs (Lemma 2.2).
Lemma 2.1 ([Heuberger 2003]). The circulant graph $C_{n}\left(d_{1}, d_{2}, \ldots, d_{\ell}\right)$ is bipartite if and only if n is even and d_{i} is odd, for all $i \in\{1,2, \ldots, \ell\}$.
Lemma 2.2 ([Hackmann and Kemnitz 2004]). If $l=\operatorname{gcd}(d, n)$ such that $d=l m$ and $n=l p$, then $C_{2 n}(d, n)$ is isomorphic either to l copies of $C_{2 p}(1, p)$ if m is odd or to l copies of $C_{2 p}(2, p)$ if m is even.
Theorem 2.1. Every cubic circulant graph $C_{2 n}(d, n)$ is AVD-Type 2.
Proof. Let G be a cubic circulant graph, i.e, $G \simeq C_{2 n}(d, n)$. From Lemma 2.2, G is isomorphic to $l=\operatorname{gcd}(d, n)$ copies of $C_{2 n}(1, n)$ or l copies of $G \simeq C_{2 n}(2, n)$. So, it is sufficient to prove that a connected component of G is AVD-Type 2 to guarantee that G is AVD-Type 2. Then G is either $C_{2 n}(1, n)$ or $C_{2 n}(2, n)$.

1. Suppose that $G \simeq C_{2 n}(1, n)$. From Proposition $2.1, \chi_{a}{ }^{\prime \prime}(G) \geq 5$.
(a) If n is odd, from Lemma 2.1, G is bipartite and $\chi_{a}^{\prime \prime}(G) \leq 5$. Therefore, $\chi_{a}^{\prime \prime}(G)=5$.
(b) If n is even, then we construct an AVD-5-total coloring π of G as on Figure 1 :

- to the vertices v_{i} and edges $v_{i} v_{i+1}$ with $i \in\{0,1, \ldots, n-1\}$:

$$
\pi\left(v_{i}\right)=\left\{\begin{array}{l}
1, \text { if } i \text { is even; } \tag{1}\\
2, \text { if } i \text { is odd. }
\end{array} \quad \pi\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{l}
3, \text { if } i \text { is even } \\
4, \text { if } i \text { is odd }
\end{array}\right.\right.
$$

- to the vertices v_{i} and edges $v_{i} v_{i+1}$ with $i \in\{n, n+1, \ldots, 2 n-1\}$:

$$
\pi\left(v_{i}\right)=\left\{\begin{array}{l}
3, \text { if } i \text { is even; } \tag{2}\\
4, \text { if } i \text { is odd. }
\end{array} \quad \pi\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{l}
1, \text { if } i \text { is even } \\
2, \text { if } i \text { is odd }
\end{array}\right.\right.
$$

- to the edges $v_{i} v_{i+n}$ for all $i \in\{0,1, \ldots, n\}$:

$$
\begin{equation*}
\pi\left(v_{i} v_{i+n}\right)=5 \tag{3}
\end{equation*}
$$

Therefore, we will display that π is a 5 -total coloring of G. Notice that (3) is a perfect matching M of G. So we use the colors $1,2,3$, and 4 to the vertices and edges of $G[V \backslash M]$. Moreover, $G[V \backslash M]$ is an even cycle with size $2 n$. We split it cycle on paths $P_{1}:=\left(v_{0} v_{1} \ldots v_{n-1}\right)$ and $P_{2}:=\left(v_{n} v_{n+1} \ldots v_{2 n-1}\right)$ and edges $v_{n-1} v_{n}$ and $v_{2 n-1} v_{0}$.
From (1), we alternate to the path P_{1} the colors 1 and 2 to the vertices and 3 and 4 to the edges; and from (2), we alternate to the path P_{2} the colors 3 and 4 to the vertices and 1 and 2 to the edges. Since the adjacent vertices of P_{1} are alternate with colors 1 and 2 , adjacent vertices v_{i} and v_{i+1} have different colors. Futhermore, since the edges are alternate with colors 3 and 4 , adjacent edges $v_{i} v_{i+1}$ and $v_{i+1} v_{i+2}$ have different colors. Also, v_{i+1} have different colors of v_{i} and v_{i+2}. The same argument can be made to the path P_{2}. Since $\pi\left(v_{i}\right)=1$ and $\pi\left(v_{i+n}\right)=3$ if i is even with

Figure 1. A scheme of the AVD-5-total coloring π of $C_{2 n}(1, n)$. The elements in blue denote the elements in the path P_{1} and the elements in red denote the elements in the path P_{2}. The set of edges in green is a perfect matching.
$i \in\{0,1, \ldots, n-1\}$; and $\pi\left(v_{i}\right)=2$ and $\pi\left(v_{i+n}\right)=4$ if i is odd with $i \in\{0,1, \ldots, n-1\}$. Therefore, $\pi\left(v_{i}\right) \neq \pi\left(v_{i+n}\right)$. Finally, we proved that π is an AVD-5-total coloring of G. Notice that if a vertex v_{i} in P_{1} has $1 \in C\left(v_{i}\right)$, then $1 \notin C\left(v_{i+1}\right)$ for $i \in\{0,1, \ldots, n-2\}$. For $i=n-1,2 \in$ $C\left(v_{i}\right)$ and $2 \notin C\left(v_{i+1}\right)$, then $C\left(v_{i}\right) \neq C\left(v_{i+1}\right)$ for $i \in\{0,1, \ldots, n-1\}$. The same occurs to the path P_{2}, if $3 \in C\left(v_{i}\right)$, then $3 \notin C\left(v_{i+1}\right)$, for $i \in\{n, n+1, \ldots, 2 n-2\}$. For $i=2 n-1,4 \in C\left(v_{i}\right)$ and $4 \notin C\left(v_{i+1}\right)$ and so $C\left(v_{i}\right) \neq C\left(v_{i+1}\right)$, for $i \in\{n, n+1, \ldots, 2 n-2\}$. Finally for $i=0$, $2 \in C\left(v_{i}\right)$ and $2 \notin C\left(v_{i+n}\right)$; for $i \in\{1,2, \ldots, n-2\}, 3 \in C\left(v_{i}\right)$ and $3 \notin C\left(v_{i+n}\right)$ if i is odd, and $4 \in C\left(v_{i}\right)$ and $4 \notin C\left(v_{i+n}\right)$ if i is even. Hence, any pair of adjacent vertices $u, v \in V(G)$, has $C(u) \neq C(v)$, and π is an AVD-5-total coloring of G.
2. Suppose that $G \simeq C_{2 n}(2, n)$. We remark that G is the circular ladder, a generalized Petersen graph. From [Zhu et al. 2016], $C_{2 n}(2, n)$ is AVD-Type 2.

Hence, G is AVD-Type 2 graph.

References

Alvarado, J., Dantas, S., and Marinho, R. (2019). On adjacent-vertex-distinguishing total colourings of powers of cycles, hypercubes and lattice graphs. Electron. Notes Theor. Comput. Sci., 346:41-51.

Behzad, M. (1965). Graphs and and their chromatic numbers. PhD thesis, Michigan State University.
Chen, M. and Guo, X. (2009). Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes. Information Processing Letters, 109(12):599-602.
Chen, X. (2008). On the adjacent vertex distinguishing total coloring numbers of graphs with $\delta=3$. Discrete Math., 308(17):4003-4007.
Chen, X. and Zhang, Z. (2008). AVDTC numbers of generalized halin graphs with maximum degree at least 6. Acta Math. Appl. Sin. Engl. Ser., 24:55-58.

Hackmann, A. and Kemnitz, A. (2004). Circular total colorings of cubic circulant graphs. J. Combin. Math. Combin. Comput., pages 65-72.

Heuberger, C. (2003). On planarity and colorability of circulant graphs. Discrete Math., 268(1):153-169.

Hulgan, J. (2009). Concise proofs for adjacent vertex-distinguishing total colorings. Discrete Math., 309(8):2548-2550.

Hulgan, J. (2010). Graph coloring with constraints. PhD thesis, University of Memphis.
Luiz, A. G., Campos, C., and de Mello, C. (2015). AVD-total-colouring of complete equipartite graphs. Discrete Appl. Math., 184:189-195.

Luiz, A. G., Campos, C., and de Mello, C. (2017). AVD-total-chromatic number of some families of graphs with $\delta(g)=3$. Discrete Appl. Math., 217:628-638.
McDiarmid, C. J. and Sánchez-Arroyo, A. (1994). Total colouring regular bipartite graphs is np-hard. Discrete Math., 124(1):155-162.
Papaioannou, A. and Raftopoulou, C. (2014). On the AVDTC of 4-regular graphs. Discrete Math., 330:20-40.
Verma, S., Fu, H.-L., and S. Panda, B. (2022). Adjacent vertex distinguishing total coloring in split graphs. Discrete Math., 345(11).

Verma, S. and Panda, B. S. (2022). Adjacent vertex distinguishing total coloring of the corona product of graphs. Discuss. Math. Graph Theory.
Vizing, V. (1964). On an estimate of the chromatic class of a p-graph. Metody Diskret. Analiz., pages 25-30.
Yap, H. P. (1996). Total colourings of graphs. Springer, Berlin.
Zhang, Z., Chen, X., and Li, J. (2005). On adjacent-vertex-distinguishing total coloring of graphs. Sci. China Ser. A-Math., 48:289-299.
Zhu, E., Jiang, F., Li, Z., Shao, Z., and Xu, J. (2016). On adjacent vertex-distinguishing total chromatic number of generalized petersen graphs. In 2016 IEEE First International Conference on Data Science in Cyberspace (DSC), pages 230-234.

[^0]: ${ }^{1}$ Snarks are bridgeless cubic graphs with chromatic index equal to 4 .

