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Abstract. The coloring game is a two-player non-cooperative game conceived
in 1981. Alice and Bob alternate turns to properly color the vertices of a fi-
nite graph G with t colors. Alice’s goal is to properly color the vertices of G
with t colors; Bob’s aim is to prevent it. If, at any point, there is an uncol-
ored vertex without an available color, Bob wins; otherwise, Alice wins. The
game chromatic number χg(G) is the smallest t for Alice to have a winning
strategy. In 1991, Bodlaender showed that a caterpillar was the smallest tree T
with χg(T ) = 4; in 1993, Faigle et al. proved χg(T ) ≤ 4 for every tree T . In
2015, Dunn et al. proposed the characterization of forests with game chromatic
numbers 3 and 4. In this paper, we extend results from caterpillars to more
general trees, and establish sufficient conditions to ensure that a tree has game
chromatic number 4.

1. Introduction
Let G = (V,E) be a finite, simple and undirected graph, with vertex set V = V (G) and
edge set E = E(G). In 1981, Martin Gardner [7] published for the first time a two player
non-cooperative map-coloring game created by Steven Brams. A decade later, this game
was reinvented by Bodlaender [1], who adapted it to the context of graphs, and named it
the coloring construction game, which was later renamed the coloring game. The game
involves two players, Alice and Bob, who alternate turns to properly color the uncolored
vertices of a graph G using colors in a given color set with t colors. Alice’s goal is to color
graph G with t colors, and Bob does his best to prevent it. Alice wins when all vertices
are properly colored with t colors; otherwise, Bob wins.

We define Alice as having a winning strategy with t colors when she has a se-
quence of moves that ensures that the graph can be completely (properly) colored with
t colors regardless of Bob’s moves along the game. Analogously, we say that Bob has
a winning strategy with t colors when he has a sequence of moves that ensures that the
graph can not be completely (properly) colored with t colors regardless of Alice’s moves
during the game.
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The game chromatic number χa
g(G) (or simply χg(G)) of G is the smallest number

t of colors such that Alice has a winning strategy for the graph coloring game on G, when
she starts the game. Building upon the previous research by Dunn et al. [3] and Furtado
et al. [5, 6], we investigate χb

g(G), the smallest number t of colors such that Alice has a
winning strategy for the graph coloring game on G, when Bob starts the game. In case
of equality, we use the notation χa,b

g (G) = χa
g(G) = χb

g(G). This means that Alice has
a winning strategy for the graph coloring game on G with χa,b

g (G) colors, regardless of
who started playing.

Let G be a graph, Z a set of vertices of G, c : Z → {1, . . . , t} a coloring function
that assigns to each vertex v ∈ Z a color c(v), and (G,Z, c) be the partially colored
graph. We say that Alice (resp. Bob) plays on (G,Z, c), if Alice (resp. Bob) colors the
uncolored vertices in V (G) \ Z. We introduce the auxiliary parameter χa

g(G,Z, c) (resp.
χb
g(G,Z, c)) as the smallest number t of colors such that Alice has a winning strategy for

the graph coloring game on G, when Alice (resp. Bob) starts playing on a graph G with a
previously colored set of vertices Z ⊆ V (G) by coloring function c. In order to simplify
the notation, we omit the coloring c and write χa

g(G,Z) (resp. χb
g(G,Z)) to represent

χa
g(G,Z, c) (resp. χb

g(G,Z, c)).

The coloring game has been extensively studied for various graph classes to ob-
tain improved upper and lower bounds for χg(G), including toroidal grids [11], Carte-
sian products of certain graph classes [2], planar graphs [12], outerplanar graphs [10],
forests [3], and partial k-trees [13].

Our research contribution focuses on analyzing the game in arbitrary trees
that contain a specific type of graph known as caterpillars. A caterpillar H =
cat(k1, k2, . . . , ks) is a tree obtained from a central path v1, v2, v3, . . ., vs (called spine)
by joining ki leaf vertices to vi, for each i ∈ {1, . . . , s}; and with number of vertices
n = s+

∑s
i=1 ki.

Caterpillars were initially investigated by Bodlaender [1], who defined an infinite
family of caterpillar trees with a game chromatic number of 4. Moreover, Dunn et al. [3]
established a criteria for determining the game chromatic number of a forest without
vertices of degree 3. In particular, we focus on studying a special category of caterpillars
denoted as 1-caterpillars defined by H = cat(k1, ..., ks) that are caterpillars with k1 =
ks = 0, and for i ∈ {2, . . . , s − 1}, ki = 1, with spine vertices v1, v2, v3, . . ., vs,
and respective leg leaves λ2, λ3, . . . , λs−1 (where λi is the vertex adjacent to vi). By
definition, this caterpillar have maximum degree 3, making them incompatible with the
criteria established by Dunn et al. [3].

The motivation of our present work arises from two references concerning the col-
oring game on 1-caterpillars. In an abstract [8], related to his thesis in French [9], Guig-
nard claimed to have a characterization of the game chromatic number for 1-caterpillars.
However, despite his significant contribution to the study of the game chromatic number
of trees, it appears that Guignard’s work has not received the attention it deserves due
to the lack of subjecting his work to a rigorous peer review process. On the other hand,
independently, Furtado et al. in [5] established conditions to guarantee that 1-caterpillars
have game chromatic number 4. We observe that Furtado et al. [5] infinite family of 1-
caterpillars aligns with the game chromatic number claimed by Guignard [8]. We hope



that our research will motivate further exploration of Guignard’s findings in his doctoral
thesis and encourage comparison with our current work, which is an extension of part of
his work for trees containing caterpillars.

2. Caterpillars in trees

The works of Guignard in [8] and Furtado et al. [5] while employing different techniques
converge on the study of several cases for a caterpillar with a previously colored set of
vertices that leads Bob’s victory in the game with 3 colors. We modify the techniques
previously utilized by Furtado et al. [5] to suit the context of trees. Next, we provide an
overview of the key definitions and results necessary for this analysis.

Let T be a tree, H ′ be a caterpillar, and H ′′ an induced subgraph of T isomorphic
to H ′. Consider two previously colored sets Z and Z ′ with Z ⊆ V (T ) and Z ′ ⊆ V (H ′).
We say that a game on (T, Z) has a copy of the game on (H ′, Z ′) (or simply a copy of
(H ′, Z ′)), if there exists an isomorphism ϕ : V (H ′) → V (H ′′) that preserves the colors
of the vertices of H ′ (both colored and uncolored) in the vertices of H ′′.

We consider games (T, Z) that have a copy of a game (H ′, Z ′) where H ′ is a 1-
caterpillar and Z ′ is a previously colored set of vertices. Let (H ′′, Z ′′) be the copy of the
game (H ′, Z ′) in (T, Z) where T is a tree and H ′ a 1-caterpillar with s spine vertices,
ki ≤ 1 for 1 < i < s and Z ′′ ⊆ Z. We call L the set of vertices adjacent to the leg leaves
of H ′′. In particular, we call li ∈ V (T ) any vertex adjacent to λi, for 2 ≤ i ≤ s − 1.
Analogously, we call W the set of vertices adjacent to the spine vertices of H ′′. We
denote by wi ∈ V (T ) any vertex adjacent to vi, for 2 ≤ i ≤ s− 1. In our figures, we use
dashed lines to represent edges that connect vertices of the copy to vertices in L or W ,
see Figures 1(a) and 2. Moreover, we use the notation iA = u (resp. iB = u) to indicate
that Alice (resp. Bob) colors the vertex u in the i-th turn. When detailing a game, we
denote color 1 as r (red), color 2 as b (blue), and color 3 as g (green). Thus, iAr = u (or
iBr = u) signifies that Alice (or Bob) colors vertex u with the color red on the i-th turn.
Similarly for colors b and g, see Figure 1(b).

(a) (b)

Figure 1. (a) dashed lines represent edges that connect vertices of the copy to
vertices in L or W ; (b)iA = w (resp. iB = u) indicates that Alice (resp. Bob)
colors the vertex u in the i-th turn.

2.1. Intermittent Caterpillars:

The first kind of graphs that we study is defined as follows. First, we define the game
(H̃s, Z

′) on a caterpillar H̃s used in Lemma 1: (i) H̃s = cat(k1, . . . , ks) with s odd; (ii)



Figure 2. The partially colored intermittent caterpillar H̃s, with s odd and s ≥ 5.

ki = 0, for i odd, and ki = 1, for i even, 1 ≤ i ≤ s. We denote this caterpillar as
intermittent caterpillar; (iii) Z ′ = {v1, vs}, with c(v1), c(vs) can eventually be equal.

The next result describes a game that consistently appears when playing on trees
that have a copy of a 1-caterpillar. Specifically, this result is crucial for proving Lemma 2.
Lemma 1. Let T be a tree, and Z be a previously colored set of vertices of T . If (T, Z)
has a copy of (H̃s, Z

′), for odd s ≥ 5, and L ∩ Z = ∅ or L ∩ Z ⊂ {l2, ls−1} with
c(l2) = c(v1) and c(ls−1) = c(vs), then χb

g(T, Z) = 4.

2.2. 1-Caterpillars
In the following results, we study 1-caterpillars that appear as an induced subgraphs of
a tree, according to s being odd or even, and having some previously colored vertices.
Among our results, we establish conditions for the vertices in W and L to ensure that
χb
g(T, Z) = 4 where T is a tree and a copy of a game (H ′, Z ′) of one the 1-caterpillars

with a previously colored set of vertices Z ′, in Figures 3(a) and 3(b) and these graphs
appear in a tree T as an induced subgraph.

(a) (b)

Figure 3. (a) The partially colored 1-caterpillar H ′, with s odd and s ≥ 9 and Z ′ =
{v′1, λ′

2, λ
′
3, v

′
s | c(v′1) = c(λ′

2) = c(λ′
3)}; (b)The partially colored 1-caterpillar

H ′, with s even and s ≥ 12.

In the following result we study a case where Bob forces the use of a fourth color
and wins the game regardless of who starts playing. We heavily rely on this result in the
proof of our main result, Theorem 3.
Lemma 2. Let T be a tree, and Z be a previously colored set of vertices of T . Suppose
that (T, Z) has a copy of a game (H ′, Z ′) where H ′ is a 1-caterpillar, with s = 16, and
Z ′ = {v′1, v′16 | c(v′1) ̸= c(v′16)}. If either (L ∪W ) ∩ Z = ∅, or (L ∪W ) ∩ Z = {l2} and
c(l2) = c(v1), then χa,b

g (T, Z) = 4.

3. The game on Caterpillars as induced subgraph of a tree
Theorem 3. Let T be a tree that has a 1-caterpillar H with s ≥ 46 as induced subgraph,
then χa,b

g (T ) = 4. If s ≥ 31, then χb
g(T ) = 4.

The proof strategy for the theorem is based on the observation that a 1-caterpillar
H with s ≥ 46 contains 3 (which only overlap in a vertex two by two) copies of the
1-caterpillar with s = 16. Therefore, Bob’s strategy in this game consists in coloring the
extreme vertices of one of these copies, satisfying the conditions of the colored vertices
established in Lemma 2. Analogously, a caterpillar with s = 31 contains 2 (which only
overlap in a vertex two by two) copies of the 1-caterpillar with s = 16, so as Bob starts to
play in these copies he can produce again a copy of the game in Lemma 2.
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